Almost étale extensions of Fontaine rings and log-crystalline cohomology in the semi-stable reduction case
- [1] The University of Utah Department of Mathematics 155 S 1400 E Salt Lake City UT 84112 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 5, page 1875-1942
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLodh, Rémi Shankar. "Almost étale extensions of Fontaine rings and log-crystalline cohomology in the semi-stable reduction case." Annales de l’institut Fourier 61.5 (2011): 1875-1942. <http://eudml.org/doc/219736>.
@article{Lodh2011,
abstract = {Let $K$ be a field of characteristic zero complete for a discrete valuation, with perfect residue field of characteristic $p>0$, and let $K^+$ be the valuation ring of $K$. We relate the log-crystalline cohomology of the special fibre of certain affine $K^+$-schemes $X=\operatorname\{Spec\}(R)$ with good or semi-stable reduction to the Galois cohomology of the fundamental group $\pi _1(X_\{\bar\{K\}\})$ of the geometric generic fibre with coefficients in a Fontaine ring constructed from $R$. This is based on Faltings’ theory of almost étale extensions.},
affiliation = {The University of Utah Department of Mathematics 155 S 1400 E Salt Lake City UT 84112 (USA)},
author = {Lodh, Rémi Shankar},
journal = {Annales de l’institut Fourier},
keywords = {$p$-adic Hodge theory; almost étale extensions; crystalline cohomology; log-structures; -adic Hodge theory},
language = {eng},
number = {5},
pages = {1875-1942},
publisher = {Association des Annales de l’institut Fourier},
title = {Almost étale extensions of Fontaine rings and log-crystalline cohomology in the semi-stable reduction case},
url = {http://eudml.org/doc/219736},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Lodh, Rémi Shankar
TI - Almost étale extensions of Fontaine rings and log-crystalline cohomology in the semi-stable reduction case
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 5
SP - 1875
EP - 1942
AB - Let $K$ be a field of characteristic zero complete for a discrete valuation, with perfect residue field of characteristic $p>0$, and let $K^+$ be the valuation ring of $K$. We relate the log-crystalline cohomology of the special fibre of certain affine $K^+$-schemes $X=\operatorname{Spec}(R)$ with good or semi-stable reduction to the Galois cohomology of the fundamental group $\pi _1(X_{\bar{K}})$ of the geometric generic fibre with coefficients in a Fontaine ring constructed from $R$. This is based on Faltings’ theory of almost étale extensions.
LA - eng
KW - $p$-adic Hodge theory; almost étale extensions; crystalline cohomology; log-structures; -adic Hodge theory
UR - http://eudml.org/doc/219736
ER -
References
top- F. Andreatta, O. Brinon, Acyclicité géométrique d’un relatif, (2007)
- P. Berthelot, Cohomologie cristalline des schémas de caractéristique , 407 (1974), Springer Zbl0298.14012MR384804
- P. Berthelot, A. Ogus, Notes on crystalline cohomology, (1978), Princeton University Press Zbl0383.14010MR491705
- N. Bourbaki, Algèbre commutative, (1985), Masson Zbl0547.13002
- C. Breuil, Topologie log-syntomique, cohomologie log-cristalline, et cohomologie de Čech, Bull. S.M.F. 124 (1996), 587-647 Zbl0865.19004MR1432059
- G. Faltings, Crystalline cohomology and -adic Galois representations, Algebraic Analysis, Geometry and Number Theory (1989), 25-80, Johns Hopkins University Press Zbl0805.14008MR1463696
- G. Faltings, Almost étale extensions, Astérisque 279 (2002), 185-270 Zbl1027.14011MR1922831
- J.-M. Fontaine, Le corps des périodes -adiques, Astérisque 223 (1994), 59-111 Zbl0940.14012MR1293971
- O. Gabber, L. Ramero, Almost ring theory, 1800 (2003), Springer Zbl1045.13002MR2004652
- A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique, Publ. math. I.H.E.S. 4,8,11,17,20,24,28,32 (1960-1967) Zbl0153.22301
- L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. E.N.S. (4ème série) 12 (1979), 501-661 Zbl0436.14007MR565469
- K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Geometry and Number Theory (1989), 191-224, Johns Hopkins University Press Zbl0776.14004MR1463703
- K. Kato, Semi-stable reduction and -adic étale cohomology, Astérisque 223 (1994), 269-293 Zbl0847.14009MR1293975
- J.-P. Serre, Corps locaux, (1968), Hermann Zbl0137.02501MR354618
- J.-P. Serre, Local Algebra, (2000), Springer Zbl0959.13010MR1771925
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.