Topologie log-syntomique, cohomologie log-cristalline et cohomologie de Čech

Christophe Breuil

Bulletin de la Société Mathématique de France (1996)

  • Volume: 124, Issue: 4, page 587-647
  • ISSN: 0037-9484

How to cite

top

Breuil, Christophe. "Topologie log-syntomique, cohomologie log-cristalline et cohomologie de Čech." Bulletin de la Société Mathématique de France 124.4 (1996): 587-647. <http://eudml.org/doc/87752>.

@article{Breuil1996,
author = {Breuil, Christophe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Čech cohomology; crystalline cohomology; Witt vectors; logarithmic point; monodromy operator; log-crystalline cohomology; syntomic coverings},
language = {fre},
number = {4},
pages = {587-647},
publisher = {Société mathématique de France},
title = {Topologie log-syntomique, cohomologie log-cristalline et cohomologie de Čech},
url = {http://eudml.org/doc/87752},
volume = {124},
year = {1996},
}

TY - JOUR
AU - Breuil, Christophe
TI - Topologie log-syntomique, cohomologie log-cristalline et cohomologie de Čech
JO - Bulletin de la Société Mathématique de France
PY - 1996
PB - Société mathématique de France
VL - 124
IS - 4
SP - 587
EP - 647
LA - fre
KW - Čech cohomology; crystalline cohomology; Witt vectors; logarithmic point; monodromy operator; log-crystalline cohomology; syntomic coverings
UR - http://eudml.org/doc/87752
ER -

References

top
  1. [Be] BERHELOT (P.). — Cohomologie cristalline des schémas de caractéristique p &gt; 0, Lecture Notes in Math., t. 407, 1974. Zbl0298.14012
  2. [BBM] BERHELOT (P.), BREEN (L.), MESSING (W.). — Théorie de Dieudonné cristalline II, Lecture Notes in Math., t. 930, 1982. Zbl0516.14015MR85k:14023
  3. [BO] BERHELOT (P.), OGUS (A.). — Notes on crystalline cohomology. — Princeton University Press, Princeton, 1978. Zbl0383.14010
  4. [Br1] BREUIL (C.). — Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. (à paraître). Zbl0883.11049
  5. [Br2] BREUIL (C.). — Construction de représentations p-adiques semi-stables, preprint, École Polytechnique, 1995. 
  6. [Br3] BREUIL (C.). — Cohomologie étale de p-torsion et cohomologie cristalline en réduction semi-stable, en préparation. 
  7. [Fa] FALTINGS (G.). — Crystalline cohomology and p-adic Galois representations, Algebraic Analysis, Geometry and Number Theory, John Hopkins University Press, 1989, p. 25-79. Zbl0805.14008MR98k:14025
  8. [FL] FONTAINE (J.-M.), LAFFAILLE (G.). — Constructions de représentations p-adiques, Ann. Sci. École Norm. Sup, t. 15, 1982, p. 547-608. Zbl0579.14037MR85c:14028
  9. [FM] FONTAINE (J.-M.), MESSING (W.). — P-adic periods and p-adic étale cohomology, Contemporary Math., t. 67, 1987, p. 179-207. Zbl0632.14016MR89g:14009
  10. [HK] HYODO (O.), KATO (K.). — Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque, t. 223, 1994, p. 221-268. Zbl0852.14004MR95k:14034
  11. [Il1] ILLUSIE (L.). — Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup, t. 12, 1979, p. 501-661. Zbl0436.14007MR82d:14013
  12. [Il2] ILLUSIE (L.). — Complexe cotangent et déformations I, Lecture Notes in Math., t. 239, 1971. Zbl0224.13014MR58 #10886a
  13. [Ka1] KATO (K.). — Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Geometry and Number Theory, John Hopkins University Press, 1989, p. 191-224. Zbl0776.14004MR99b:14020
  14. [Ka2] KATO (K.). — Semi-stable reduction and p-adic étale cohomology, Astérisque, t. 223, 1994, p. 269-293. Zbl0847.14009MR95i:14020
  15. [Mi] MILNE (J.). — Étale cohomology. — Princeton University Press, Princeton, 1980. Zbl0433.14012MR81j:14002
  16. [Ts] TSUJI (T.). — On syntomic cohomology of higher degree of a semi-stable family, preprint, Kyoto, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.