Harmonic Measure in Simply Connected Domains
John L. Lewis[1]; Kaj Nyström[2]; Pietro Poggi-Corradini[3]
- [1] University of Kentucky Department of Mathematics Lexington, KY 40506-0027 (USA)
- [2] Umeå University Department of Mathematics 90187 Umeå (Sweden)
- [3] Kansas State University Cardwell Hall Department of Mathematics Manhattan, KS 66506 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 2, page 689-715
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLewis, John L., Nyström, Kaj, and Poggi-Corradini, Pietro. "$p$ Harmonic Measure in Simply Connected Domains." Annales de l’institut Fourier 61.2 (2011): 689-715. <http://eudml.org/doc/219746>.
@article{Lewis2011,
abstract = {Let $ \Omega $ be a bounded simply connected domain in the complex plane, $ \mathbb\{C\} $. Let $ N $ be a neighborhood of $ \partial \Omega $, let $ p $ be fixed, $ 1 < p < \infty , $ and let $ \hat\{u\} $ be a positive weak solution to the $ p $ Laplace equation in $ \Omega \cap N. $ Assume that $ \hat\{u\} $ has zero boundary values on $ \partial \Omega $ in the Sobolev sense and extend $ \hat\{u\} $ to $ N \setminus \Omega $ by putting $ \hat\{u\} \equiv 0 $ on $ N \setminus \Omega . $ Then there exists a positive finite Borel measure $ \hat\{\mu \}$ on $ \mathbb\{C\} $ with support contained in $ \partial \Omega $ and such that\begin\{eqnarray*\} \int | \nabla \hat\{u\} |^\{p - 2\} \, \langle \nabla \hat\{u\} , \nabla \phi \rangle \, dA = - \int \phi \, d \hat\{\mu \}\end\{eqnarray*\}whenever $ \phi \in C_0^\infty ( N ). $ If $ p = 2$ and if $\hat\{u\}$ is the Green function for $ \Omega $ with pole at $x\in \Omega \setminus \bar\{N\}$ then the measure $\hat\{\mu \}$ coincides with harmonic measure at $x$, $\omega =\omega ^x$, associated to the Laplace equation. In this paper we continue the studies initiated by the first author by establishing new results, in simply connected domains, concerning the Hausdorff dimension of the support of the measure $\hat\{\mu \}$. In particular, we prove results, for $ 1 < p < \infty $, $p\ne 2$, reminiscent of the famous result of Makarov concerning the Hausdorff dimension of the support of harmonic measure in simply connected domains.},
affiliation = {University of Kentucky Department of Mathematics Lexington, KY 40506-0027 (USA); Umeå University Department of Mathematics 90187 Umeå (Sweden); Kansas State University Cardwell Hall Department of Mathematics Manhattan, KS 66506 (USA)},
author = {Lewis, John L., Nyström, Kaj, Poggi-Corradini, Pietro},
journal = {Annales de l’institut Fourier},
keywords = {Harmonic function; harmonic measure; $p$ harmonic measure; $p$ harmonic function; simply connected domain; Hausdorff measure; Hausdorff dimension; -harmonic measure},
language = {eng},
number = {2},
pages = {689-715},
publisher = {Association des Annales de l’institut Fourier},
title = {$p$ Harmonic Measure in Simply Connected Domains},
url = {http://eudml.org/doc/219746},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Lewis, John L.
AU - Nyström, Kaj
AU - Poggi-Corradini, Pietro
TI - $p$ Harmonic Measure in Simply Connected Domains
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 689
EP - 715
AB - Let $ \Omega $ be a bounded simply connected domain in the complex plane, $ \mathbb{C} $. Let $ N $ be a neighborhood of $ \partial \Omega $, let $ p $ be fixed, $ 1 < p < \infty , $ and let $ \hat{u} $ be a positive weak solution to the $ p $ Laplace equation in $ \Omega \cap N. $ Assume that $ \hat{u} $ has zero boundary values on $ \partial \Omega $ in the Sobolev sense and extend $ \hat{u} $ to $ N \setminus \Omega $ by putting $ \hat{u} \equiv 0 $ on $ N \setminus \Omega . $ Then there exists a positive finite Borel measure $ \hat{\mu }$ on $ \mathbb{C} $ with support contained in $ \partial \Omega $ and such that\begin{eqnarray*} \int | \nabla \hat{u} |^{p - 2} \, \langle \nabla \hat{u} , \nabla \phi \rangle \, dA = - \int \phi \, d \hat{\mu }\end{eqnarray*}whenever $ \phi \in C_0^\infty ( N ). $ If $ p = 2$ and if $\hat{u}$ is the Green function for $ \Omega $ with pole at $x\in \Omega \setminus \bar{N}$ then the measure $\hat{\mu }$ coincides with harmonic measure at $x$, $\omega =\omega ^x$, associated to the Laplace equation. In this paper we continue the studies initiated by the first author by establishing new results, in simply connected domains, concerning the Hausdorff dimension of the support of the measure $\hat{\mu }$. In particular, we prove results, for $ 1 < p < \infty $, $p\ne 2$, reminiscent of the famous result of Makarov concerning the Hausdorff dimension of the support of harmonic measure in simply connected domains.
LA - eng
KW - Harmonic function; harmonic measure; $p$ harmonic measure; $p$ harmonic function; simply connected domain; Hausdorff measure; Hausdorff dimension; -harmonic measure
UR - http://eudml.org/doc/219746
ER -
References
top- H. Aikawa, N. Shanmugalingam, Carleson-type estimates for - harmonic functions and the conformal Martin boundary of John domains in metric measure spaces, Michigan Math. J. 53 (2005), 165-188 Zbl1076.31006MR2125540
- Z. Balogh, M. Bonk, Lengths of radii under conformal maps of the unit disc, Proc. Amer. Math. Soc. 127 (1999), 801-804 Zbl0939.30018MR1469396
- A. Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. Math. 21 (1996), 255-270 Zbl0849.31005MR1404086
- B. Bennewitz, J. Lewis, On the dimension of -harmonic measure, Ann. Acad. Sci. Fenn. Math. 30 (2005), 459-505 Zbl1194.35189MR2173375
- J. Bourgain, On the Hausdorff dimension of harmonic measure in higher dimensions, Inv. Math. 87 (1987), 477-483 Zbl0616.31004MR874032
- L. Caffarelli, E. Fabes, S. Mortola, S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana J. Math. 30 (1981), 621-640 Zbl0512.35038MR620271
- L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393-399 Zbl0107.08402MR159013
- L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. 10 (1985), 113-123 Zbl0593.31004MR802473
- Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1957), 429-440 Zbl0078.09301MR87767
- J. Garnett, D. Marshall, Harmonic Measure, (2005), Cambridge University Press Zbl1139.31001MR2150803
- H. Hedenmalm, I. Kayamov, On the Makarov law of the iterated logarithm, Proc. Amer. Math. Soc. 135 (2007), 2235-2248 Zbl1117.30024MR2299501
- J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, (1993), Oxford University Press Zbl0780.31001MR1207810
- P. Jones, T. Wolff, Hausdorff dimension of harmonic measure in the plane, Acta Math. 161 (1988), 131-144 Zbl0667.30020MR962097
- R. Kaufmann, J.M. Wu, On the snowflake domain, Ark. Mat. 23 (1985), 177-183 Zbl0573.30030MR800179
- J. Lewis, Note on harmonic measure, Computational Methods in Function Theory 6 (2006), 109-144 Zbl1161.35406MR2241036
- J. Lewis, K. Nyström, Boundary Behaviour and the Martin Boundary Problem for -Harmonic Functions in Lipschitz domains Zbl1210.31004
- J. Lewis, K. Nyström, Boundary Behaviour of -Harmonic Functions in Domains Beyond Lipschitz Domains, Advances in the Calculus of Variations 1 (2008), 133-177 Zbl1169.31004MR2427450
- J. Lewis, K. Nyström, Regularity and Free Boundary Regularity for the -Laplacian in Lipschitz and -domains, Annales Acad. Sci. Fenn. Mathematica 33 (2008), 523-548 Zbl1202.35110MR2431379
- J. Lewis, K. Nyström, Boundary Behaviour for -Harmonic Functions in Lipschitz and Starlike Lipschitz Ring Domains, Annales Scientifiques de L’Ecole Normale Superieure 40 (September-October 2007), 765-813 Zbl1134.31008MR2382861
- J. Lewis, G. Verchota, A. Vogel, On Wolff snowflakes, Pacific Journal of Mathematics 218 (2005), 139-166 Zbl1108.31006MR2224593
- N. Makarov, Distortion of boundary sets under conformal mapping, Proc. London Math. Soc. 51 (1985), 369-384 Zbl0573.30029MR794117
- P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, (1995), Cambridge University Press Zbl0819.28004MR1333890
- C. Pommerenke, Univalent Functions, (1975), Vandenhoeck and Ruprecht, Göttingen Zbl0298.30014MR507768
- A. Volberg, On the dimension of harmonic measure of Cantor repellers, Michigan Math. J. 40 (1993), 239-258 Zbl0797.30022MR1226830
- T. Wolff, Plane harmonic measures live on sets of finite linear length, Ark. Mat. 31 (1993), 137-172 Zbl0809.30007MR1230270
- Thomas H. Wolff, Counterexamples with harmonic gradients in , Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991) 42 (1995), 321-384, Princeton Univ. Press, Princeton, NJ Zbl0836.31004MR1315554
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.