Moving frames, Geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors
- [1] University of Wisconsin Mathematics department Madison, Wisconsin 53706 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 6, page 2405-2434
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMarí Beffa, Gloria. "Moving frames, Geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors." Annales de l’institut Fourier 61.6 (2011): 2405-2434. <http://eudml.org/doc/219747>.
@article{MaríBeffa2011,
abstract = {In this paper we describe a non-local moving frame along a curve of pure spinors in $\mathrm\{O\}(2m,2m)/P$, and its associated basis of differential invariants. We show that the space of differential invariants of Schwarzian-type define a Poisson submanifold of the spinor Geometric Poisson brackets. The resulting restriction is given by a decoupled system of KdV Poisson structures. We define a generalization of the Schwarzian-KdV evolution for pure spinor curves and we prove that it induces a decoupled system of KdV equations on the invariants of projective type, when restricted to a certain level set. We also describe its associated Miura transformation and non-commutative modified KdV system.},
affiliation = {University of Wisconsin Mathematics department Madison, Wisconsin 53706 (USA)},
author = {Marí Beffa, Gloria},
journal = {Annales de l’institut Fourier},
keywords = {Moving frame; spinor evolutions; geometric Poisson brackets; KdV equations; differential invariants; Miura transformation; non-commutative modified KdV system; moving frame},
language = {eng},
number = {6},
pages = {2405-2434},
publisher = {Association des Annales de l’institut Fourier},
title = {Moving frames, Geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors},
url = {http://eudml.org/doc/219747},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Marí Beffa, Gloria
TI - Moving frames, Geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2405
EP - 2434
AB - In this paper we describe a non-local moving frame along a curve of pure spinors in $\mathrm{O}(2m,2m)/P$, and its associated basis of differential invariants. We show that the space of differential invariants of Schwarzian-type define a Poisson submanifold of the spinor Geometric Poisson brackets. The resulting restriction is given by a decoupled system of KdV Poisson structures. We define a generalization of the Schwarzian-KdV evolution for pure spinor curves and we prove that it induces a decoupled system of KdV equations on the invariants of projective type, when restricted to a certain level set. We also describe its associated Miura transformation and non-commutative modified KdV system.
LA - eng
KW - Moving frame; spinor evolutions; geometric Poisson brackets; KdV equations; differential invariants; Miura transformation; non-commutative modified KdV system; moving frame
UR - http://eudml.org/doc/219747
ER -
References
top- Stephen C. Anco, Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations, J. Phys. A 39 (2006), 2043-2072 Zbl1085.37049MR2211976
- Stephen C. Anco, Hamiltonian flows of curves in and vector soliton equations of mKdV and sine-Gordon type, SIGMA Symmetry Integrability Geom. Methods Appl. 2 (2006) Zbl1102.37042MR2217753
- Toby N. Bailey, Michael G. Eastwood, Conformal circles and parametrizations of curves in conformal manifolds, Proc. Amer. Math. Soc. 108 (1990), 215-221 Zbl0684.53016
- Toby N. Bailey, Michael G. Eastwood, Complex paraconformal manifolds—their differential geometry and twistor theory, Forum Math. 3 (1991), 61-103 Zbl0728.53005MR1085595
- Annalisa Calini, Thomas Ivey, Gloria Marí-Beffa, Remarks on KdV-type flows on star-shaped curves, Phys. D 238 (2009), 788-797 Zbl1218.37102MR2522973
- Élie Cartan, La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés, Exposés de Géométrie 5 (1935), Hermann, Paris Zbl0010.39501
- Élie Cartan, Les espaces à connexion conforme, Oeuvres Complètes III.1 (1955), 747-797, Gauthier-Villars, Paris
- Kai-Seng Chou, Changzheng Qu, Integrable equations arising from motions of plane curves, Phys. D 162 (2002), 9-33 Zbl0987.35139MR1882237
- Kai-Seng Chou, Changzheng Qu, Integrable equations arising from motions of plane curves. II, J. Nonlinear Sci. 13 (2003), 487-517 Zbl1045.35063MR1882237
- V. G. Drinfeld, V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24 (1984), 81-180, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow Zbl0558.58027MR760998
- B. A. Dubrovin, S. P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Uspekhi Mat. Nauk 44 (1989), 29-98, 203 Zbl0712.58032MR1037010
- M. Eastwood, G. Marí Beffa, Geometric Poisson brackets on Grassmannian and conformal spheres Zbl1248.53068
- Mark Fels, Peter J. Olver, Moving coframes. I. A practical algorithm, Acta Appl. Math. 51 (1998), 161-213 Zbl0937.53012MR1620769
- Mark Fels, Peter J. Olver, Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127-208 Zbl0937.53013MR1681815
- A. Fialkov, The Conformal Theory of Curves, Transactions of the AMS 51 (1942), 435-568 Zbl0063.01358MR6465
- François Gay-Balmaz, Tudor S. Ratiu, Group actions on chains of Banach manifolds and applications to fluid dynamics, Ann. Global Anal. Geom. 31 (2007), 287-328 Zbl1122.58006MR2314804
- Mark L. Green, The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, Duke Math. J. 45 (1978), 735-779 Zbl0414.53039MR518104
- P. Griffiths, On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814 Zbl0294.53034MR410607
- R. Hasimoto, A soliton on a vortex filament, J. Fluid Mechanics 51 (1972), 477-485 Zbl0237.76010
- N. J. Hitchin, G. B. Segal, R. S. Ward, Integrable systems, 4 (1999), The Clarendon Press Oxford University Press, New York Zbl1082.37501MR1723384
- Rongpei Huang, David A. Singer, A new flow on starlike curves in , Proc. Amer. Math. Soc. 130 (2002), 2725-2735 (electronic) Zbl1007.53007MR1900890
- E. Hubert, Generation properties of differential invariants in the moving frame methods
- A. A. Kirillov, Infinite-dimensional groups, their representations, orbits, invariants, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (1980), 705-708, Acad. Sci. Fennica, Helsinki Zbl0427.22012MR562675
- Joel Langer, Ron Perline, Poisson geometry of the filament equation, J. Nonlinear Sci. 1 (1991), 71-93 Zbl0795.35115MR1102831
- Joel Langer, Ron Perline, Geometric realizations of Fordy-Kulish nonlinear Schrödinger systems, Pacific J. Math. 195 (2000), 157-178 Zbl1115.37353MR1781618
- Elizabeth L. Mansfield, Peter H. van der Kamp, Evolution of curvature invariants and lifting integrability, J. Geom. Phys. 56 (2006), 1294-1325 Zbl1099.53012MR2236264
- G. Marí Beffa, P. J. Olver, Poisson structures for geometric curve flows in semi-simple homogeneous spaces, Regul. Chaotic Dyn. 15 (2010), 532-550 Zbl1229.22018MR2679763
- G. Marí Beffa, J. A. Sanders, Jing Ping Wang, Integrable systems in three-dimensional Riemannian geometry, J. Nonlinear Sci. 12 (2002), 143-167 Zbl1140.37361MR1894465
- Gloria Marí Beffa, On completely integrable geometric evolutions of curves of Lagrangian planes, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 111-131 Zbl1130.37032MR2359775
- Gloria Marí Beffa, Geometric Poisson brackets in flat semisimple homogenous spaces, Asian Journal of Mathematics 12 (2008), 1-33 Zbl1173.37054MR2415008
- Gloria Marí Beffa, Geometric realizations of bi-Hamiltonian completely integrable systems, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008) Zbl1157.37336MR2393293
- Gloria Marí Beffa, Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds, Ann. Inst. Fourier (Grenoble) 58 (2008), 1295-1335 Zbl1192.37099MR2427961
- Gloria Marí Beffa, On bi-Hamiltonian flows and their realizations as curves in real homogeneous manifold, Pacific Journal of Mathematics 247 (2010), 163-188 Zbl1213.37096MR2718210
- Peter J. Olver, Equivalence, invariants, and symmetry, (1995), Cambridge University Press, Cambridge Zbl0837.58001MR1337276
- Valentin Ovsienko, Lagrange Schwarzian derivative and symplectic Sturm theory, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), 73-96 Zbl0780.34004MR1230706
- Valentin Ovsienko, S. Tabachnikov, Projective differential geometry old and new, 165 (2005), Cambridge University Press, Cambridge Zbl1073.53001MR2177471
- Jan A. Sanders, Jing Ping Wang, Integrable systems in -dimensional Riemannian geometry, Mosc. Math. J. 3 (2003), 1369-1393 Zbl1050.37035MR2058803
- Graeme Segal, The geometry of the KdV equation, Internat. J. Modern Phys. A 6 (1991), 2859-2869 Zbl0741.35073MR1117753
- Shane A. Squires, Gloria Marí Beffa, Integrable systems associated to curves in flat Galilean and Minkowski spaces, Appl. Anal. 89 (2010), 571-592 Zbl1218.37095MR2647767
- Chuu-Lian Terng, Gudlaugur Thorbergsson, Completely integrable curve flows on adjoint orbits, Results Math. 40 (2001), 286-309 Zbl1023.37041MR1860376
- Chuu-Lian Terng, Karen Uhlenbeck, Schrödinger flows on Grassmannians, Integrable systems, geometry, and topology 36 (2006), 235-256, Amer. Math. Soc., Providence, RI Zbl1110.37056MR2222517
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.