On the classification of 3-dimensional non-associative division algebras over -adic fields
Abdulaziz Deajim[1]; David Grant[2]
- [1] Department of Mathematics King Khalid University P.O. Box 9004 Abha, Saudi Arabia
- [2] Department of Mathematics University of Colorado at Boulder Boulder, Colorado 80309-0395, USA
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 2, page 329-346
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDeajim, Abdulaziz, and Grant, David. "On the classification of 3-dimensional non-associative division algebras over $p$-adic fields." Journal de Théorie des Nombres de Bordeaux 23.2 (2011): 329-346. <http://eudml.org/doc/219755>.
@article{Deajim2011,
abstract = {Let $p$ be a prime and $K$ a $p$-adic field (a finite extension of the field of $p$-adic numbers $\{\mathbb\{Q\}\}_p$). We employ the main results in [12] and the arithmetic of elliptic curves over $K$ to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over $K$ to the classification of ternary cubic forms $H$ over $K$ (up to equivalence) with no non-trivial zeros over $K$. We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian of $H$.This result completes the classification of 3-dimensional non-associative division algebras over number fields done in [12]. These algebras are useful for the construction of space-time codes, which are used to make communications over multiple-transmit antenna systems more reliable.},
affiliation = {Department of Mathematics King Khalid University P.O. Box 9004 Abha, Saudi Arabia; Department of Mathematics University of Colorado at Boulder Boulder, Colorado 80309-0395, USA},
author = {Deajim, Abdulaziz, Grant, David},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {division algebra; p-adic field},
language = {eng},
month = {6},
number = {2},
pages = {329-346},
publisher = {Société Arithmétique de Bordeaux},
title = {On the classification of 3-dimensional non-associative division algebras over $p$-adic fields},
url = {http://eudml.org/doc/219755},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Deajim, Abdulaziz
AU - Grant, David
TI - On the classification of 3-dimensional non-associative division algebras over $p$-adic fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/6//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 2
SP - 329
EP - 346
AB - Let $p$ be a prime and $K$ a $p$-adic field (a finite extension of the field of $p$-adic numbers ${\mathbb{Q}}_p$). We employ the main results in [12] and the arithmetic of elliptic curves over $K$ to reduce the problem of classifying 3-dimensional non-associative division algebras (up to isotopy) over $K$ to the classification of ternary cubic forms $H$ over $K$ (up to equivalence) with no non-trivial zeros over $K$. We give an explicit solution to the latter problem, which we then relate to the reduction type of the jacobian of $H$.This result completes the classification of 3-dimensional non-associative division algebras over number fields done in [12]. These algebras are useful for the construction of space-time codes, which are used to make communications over multiple-transmit antenna systems more reliable.
LA - eng
KW - division algebra; p-adic field
UR - http://eudml.org/doc/219755
ER -
References
top- A. A. Albert, Non-associative algebras I: Fundamental concepts and Isotopy. Ann. of Math. 43 (1942), 685–707. Zbl0061.04807MR7747
- A. A. Albert, On Nonassociative Division Algebras. Trans. Amer. Math. Soc. 72 (1952), 296–309. Zbl0046.03601MR47027
- A. A. Albert, Generalized Twisted Fields. Pac. J. Math. 11 (1961), 1–8. Zbl0154.27203MR122850
- S. An, S. Kim, D. Marshall, S. Marshall, W. McCallum, and A. Perlis, Jacobians of Genus One Curves. J. Number Theory 90 (2001), 304–315. Zbl1066.14035MR1858080
- M. Artin, F. Rodriguez-Villegas, and J. Tate, On the jacobians of plane cubics. Adv. Math. 198 (2005), 366–382. Zbl1092.14054MR2183258
- A. Beauville, Determinental hypersurfaces. Mich. Math. J. 48 (2000), 39–64. Zbl1076.14534MR1786479
- M. Bilioti, V. Jha, and N. L. Larson, Foundations of Translation Planes. Marcel Dekker, New York, 2001. Zbl0987.51002MR1840342
- Jeff Biggus, Sketching the history of hypercomplex numbers. Available at http://history.hyperjeff.net/hypercomplex
- J. V. Chipalkatti, Decomposable ternary cubics. Experiment. Math. 11 (2002), 69–80. Zbl1046.14500MR1960301
- J. E. Cremona, T. A. Fisher, and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves. J. Algebra & Number Theory. 4 (2010), 763–820. Zbl1222.11073MR2728489
- A. Deajim, On Non-Associative Division Algebras Arising from Elliptic Curves. Ph.D. thesis, University of Colorado at Boulder, 2006. MR2709060
- A. Deajim and D. Grant, Space Time Codes and Non-Associative Division Algebras Arising from Elliptic Curves. Contemp. Math. 463 (2008), 29–44. Zbl1163.17005MR2459987
- A. Deajim, D. Grant, S. Limburg, and M. K. Varanasi, Space-time codes constructed from non-associative division algebras. in preparation.
- L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7 (1906), 370–390. Zbl37.0111.06MR1500755
- L. E. Dickson, On triple algebras and ternary cubic forms. Bull. Amer. Math. Soc. 14 (1908), 160–168. Zbl39.0138.03MR1558578
- T. A. Fisher, Testing equivalence of ternary cubics. in “Algorithmic number theory,” F. Hess, S. Pauli, M. Pohst (eds.), Lecture Notes in Comput. Sci., Springer, 4076 (2006), 333-345. Zbl1143.11325MR2282934
- T. A. FisherA new approach to minimising binary quartics and ternary cubics. Math. Res. Lett. 14 (2007), 597–613. Zbl1142.11038MR2335986
- W. Fulton, Algebraic Curves. W. A. Benjamin, New York, 1969. Zbl0181.23901MR313252
- I. Kaplansky, Three-Dimensional Division Algebras II. Houston J. Math. 1, No. 1 (1975), 63–79. Zbl0355.17007MR432705
- S. Lichtenbaum, The period-index problem for elliptic curves. Amer. J. Math. 90, No. 4 (1968), 1209–1223. Zbl0187.18602MR237506
- G. Menichetti, On a Kaplansky Conjecture Concerning Three-Dimensional Division Algebras over a Finite Field. J. Algebra 47, No. 2 (1977), 400-410. Zbl0362.17002MR453823
- G. Menichetti, -Dimensional Algebras over a Field with Cyclic Extension of Degree . Geometrica Dedicata 63 (1996), 69–94. Zbl0869.17002MR1413622
- J. S. Milne, Weil-Châtelet groups over local fields. Ann. scient. Éc. Norm. Sup., 4th series. 3, (1970), 273–284. Zbl0212.53201MR276249
- G. Salmon, Higher Plane Curves. 3rd ed., reprinted by Chelsea, New York, 1879. Zbl05.0341.01
- R. Schafer, An Introduction to Nonassociative Division Algebras. Dover Publications, New York, 1995. MR1375235
- J-P. Serre, Local Fields. GTM 67, Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
- J. Silverman, The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
- J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves. GTM 151, Springer-Verlag, New York, 1994. Zbl0911.14015MR1312368
- V. Tarokh, N. Seshadri, and A. Calderbank, Space-time block codes for high data rate wireless communications. IEEE Trans. Inf. Theory 44, No. 2 (1998), 744–765. Zbl0910.94013MR1607687
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.