Torsors under tori and Néron models
- [1] Mathematics Institute Zeeman Building University of Warwick Coventry CV4 7AL, UK
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 2, page 309-321
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBright, Martin. "Torsors under tori and Néron models." Journal de Théorie des Nombres de Bordeaux 23.2 (2011): 309-321. <http://eudml.org/doc/219777>.
@article{Bright2011,
abstract = {Let $R$ be a Henselian discrete valuation ring with field of fractions $K$. If $X$ is a smooth variety over $K$ and $G$ a torus over $K$, then we consider $X$-torsors under $G$. If $\mathcal\{X\}/R$ is a model of $X$ then, using a result of Brahm, we show that $X$-torsors under $G$ extend to $\mathcal\{X\}$-torsors under a Néron model of $G$ if $G$ is split by a tamely ramified extension of $K$. It follows that the evaluation map associated to such a torsor factors through reduction to the special fibre. In this way we can use the geometry of the special fibre to study the arithmetic of $X$.},
affiliation = {Mathematics Institute Zeeman Building University of Warwick Coventry CV4 7AL, UK},
author = {Bright, Martin},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Torsors; Néron models; torsor; Néron model},
language = {eng},
month = {6},
number = {2},
pages = {309-321},
publisher = {Société Arithmétique de Bordeaux},
title = {Torsors under tori and Néron models},
url = {http://eudml.org/doc/219777},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Bright, Martin
TI - Torsors under tori and Néron models
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/6//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 2
SP - 309
EP - 321
AB - Let $R$ be a Henselian discrete valuation ring with field of fractions $K$. If $X$ is a smooth variety over $K$ and $G$ a torus over $K$, then we consider $X$-torsors under $G$. If $\mathcal{X}/R$ is a model of $X$ then, using a result of Brahm, we show that $X$-torsors under $G$ extend to $\mathcal{X}$-torsors under a Néron model of $G$ if $G$ is split by a tamely ramified extension of $K$. It follows that the evaluation map associated to such a torsor factors through reduction to the special fibre. In this way we can use the geometry of the special fibre to study the arithmetic of $X$.
LA - eng
KW - Torsors; Néron models; torsor; Néron model
UR - http://eudml.org/doc/219777
ER -
References
top- S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 21. Springer-Verlag, Berlin, 1990. Zbl0705.14001MR1045822
- B. Brahm, Néron-Modelle von algebraischen Tori. In Äquivariante derivierte Kategorien rigider Räume. Néron Modelle von algebraischen Tori, Schriftenreihe Math. Inst. Univ. Münster 3. Ser. 31 (2004), 154. MR2142635
- M. J. Bright, Evaluating Azumaya algebras on cubic surfaces. Manuscripta Math. 134(3) (2011), 405–421. Zbl1273.11101MR2765718
- J.-L. Colliot-Thélène, Hilbert’s Theorem 90 for , with application to the Chow groups of rational surfaces. Invent. Math. 71(1) (1983), 1–20. Zbl0527.14011MR688259
- J.-L. Colliot-Thélène and J.-J. Sansuc, Torseurs sous des groupes de type multiplicatif; applications à l’étude des points rationnels de certaines variétés algébriques. C. R. Acad. Sci. Paris Sér. A-B 282(18) (1976), Aii, A1113–A1116. Zbl0337.14014MR414556
- J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles. II. Duke Math. J. 54(2) (1987), 375–492. Zbl0659.14028MR899402
- M. Demazure and A. Grothendieck, editors. Schémas en groupes. III: Structure des schémas en groupes réductifs. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Lecture Notes in Mathematics 153. Springer-Verlag, Berlin, 1962/1964. Zbl0212.52810MR274460
- J. Giraud, Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften 179. Springer-Verlag, Berlin, 1971. Zbl0226.14011MR344253
- A. Grothendieck, Le groupe de Brauer III. In J. Giraud et al., editors, Dix Exposés sur la Cohomologie des Schémas, Advanced studies in mathematics 3, 88–188. North-Holland, Amsterdam, 1968. Zbl0198.25901MR244271
- D. Harari, Méthode des fibrations et obstruction de Manin. Duke Math. J. 75(1) (1994), 221–260. Zbl0847.14001MR1284820
- S. Keel and J. McKernan, Rational curves on quasi-projective surfaces. Mem. Amer. Math. Soc. 140(669) (1999). Zbl0955.14031MR1610249
- J. S. Milne, Etale Cohomology. Princeton mathematical series 33. Princeton University Press, 1980. Zbl0433.14012MR559531
- J.-P. Serre, Corps Locaux. Publications de l’Institut de Mathématique de l’Université de Nancago VIII. Hermann, Paris, 1968. Zbl0137.02601MR354618
- J.-P. Serre, Algebraic groups and class fields. Graduate Texts in Mathematics 117. Springer-Verlag, New York, 1988. Zbl0703.14001MR918564
- J.-P. Serre, Cohomologie galoisienne. Lecture Notes in Mathematics 5. Fifth edition, Springer-Verlag, Berlin, 1994. Zbl0812.12002MR1324577
- A. Skorobogatov, Torsors and rational points. Cambridge Tracts in Mathematics 144. Cambridge University Press, Cambridge, 2001. Zbl0972.14015MR1845760
- X. Xarles, The scheme of connected components of the Néron model of an algebraic torus. J. Reine Angew. Math. 437 (1993), 167–179. Zbl0764.14009MR1212256
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.