Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces
Klaus Hulek[1]; Remke Kloosterman[2]
- [1] Leibniz Universität Hannover Institut für Algebraische Geometrie Welfengarten 1 30167 Hannover (Germany)
- [2] Humboldt Universität zu Berlin Institut für Mathematik Unter den Linden 6 10099 Berlin (Germany)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 3, page 1133-1179
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHulek, Klaus, and Kloosterman, Remke. "Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces." Annales de l’institut Fourier 61.3 (2011): 1133-1179. <http://eudml.org/doc/219798>.
@article{Hulek2011,
abstract = {In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective $4$-space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.},
affiliation = {Leibniz Universität Hannover Institut für Algebraische Geometrie Welfengarten 1 30167 Hannover (Germany); Humboldt Universität zu Berlin Institut für Mathematik Unter den Linden 6 10099 Berlin (Germany)},
author = {Hulek, Klaus, Kloosterman, Remke},
journal = {Annales de l’institut Fourier},
keywords = {Mordel-Weil group of Elliptic threefolds; Cohomology of singular varieties; Mixed Hodge structures; Mordell-Weil group of elliptic threefolds; cohomology of singular varieties; mixed Hodge stuctures},
language = {eng},
number = {3},
pages = {1133-1179},
publisher = {Association des Annales de l’institut Fourier},
title = {Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces},
url = {http://eudml.org/doc/219798},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Hulek, Klaus
AU - Kloosterman, Remke
TI - Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 1133
EP - 1179
AB - In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective $4$-space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.
LA - eng
KW - Mordel-Weil group of Elliptic threefolds; Cohomology of singular varieties; Mixed Hodge structures; Mordell-Weil group of elliptic threefolds; cohomology of singular varieties; mixed Hodge stuctures
UR - http://eudml.org/doc/219798
ER -
References
top- V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535 Zbl0829.14023MR1269718
- N. Behrens, Calabi-Yau 3-Varietäten mit elliptischen Faserungen über Del Pezzo-Flächen, (2006), Diplomarbeit, Leibniz Universität Hannover, Hannover
- C. H. Clemens, Double solids, Adv. in Math. 47 (1983), 107-230 Zbl0509.14045MR690465
- D. A. Cox, The Noether-Lefschetz locus of regular elliptic surfaces with section and , Amer. J. Math. 112 (1990), 289-329 Zbl0721.14017MR1047301
- S. Cynk, Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), 325-331 Zbl0983.14017MR1828878
- P. Deligne, A. Dimca, Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulières, Ann. Sci. École Norm. Sup. (4) 23 (1990), 645-656 Zbl0743.14028MR1072821
- A. Dimca, Topics on real and complex singularities, (1987), Friedr. Vieweg & Sohn, Braunschweig Zbl0628.14001MR1013785
- A. Dimca, Betti numbers of hypersurfaces and defects of linear systems, Duke Math. J. 60 (1990), 285-298 Zbl0729.14017MR1047124
- A. Dimca, Singularities and topology of hypersurfaces, (1992), Springer-Verlag, New York Zbl0753.57001MR1194180
- A. Dimca, M. Saito, L. Wotzlaw, A generalization of Griffiths’ theorem on rational integrals, II, (2007) Zbl1192.14009
- B. van Geemen, J. Werner, Nodal quintics in , Arithmetic of complex manifolds (Erlangen, 1988) 1399 (1989), 48-59, Springer, Berlin Zbl0697.14027MR1034256
- P. A. Griffiths, On the periods of certain rational integrals. II, Ann. of Math. (2) 90 (1969), 496-541 Zbl0215.08103MR260733
- M. Grooten, J. H. M. Steenbrink, Defect and Hodge numbers of hypersurfaces, (2007)
- T. de Jong, G. Pfister, Local analytic geometry, (2000), Friedr. Vieweg & Sohn, Braunschweig Zbl0959.32011MR1760953
- R. Kloosterman, Elliptic surfaces with geometric Mordell-Weil rank 15, Canad. Math. Bull. 50 (2007), 215-226 Zbl1162.14024MR2317444
- R. Kloosterman, Higher Noether-Lefschetz loci of elliptic surfaces, J. Differential Geom. 76 (2007), 293-316 Zbl1141.14019MR2330416
- R. Kloosterman, On the classification of degree 1 elliptic threefolds with constant -invariant, (2008) Zbl1283.14014
- R. Kloosterman, A different method to calculate the rank of an elliptic threefold, (to appear in Rocky Mountain J. Math., available at arxiv:0812.3222)
- R. Miranda, Smooth models for elliptic threefolds, The birational geometry of degenerations (Cambridge, Mass., 1981) 29 (1983), 85-133, Birkhäuser Boston, Mass. Zbl0583.14014MR690264
- R. Miranda, The basic theory of elliptic surfaces, (1989), ETS Editrice, Pisa Zbl0744.14026MR1078016
- K. Oguiso, T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul 40 (1991), 83-99 Zbl0757.14011MR1104782
- C. A. M. Peters, J. H. M. Steenbrink, Mixed Hodge structures, 52 (2008), Springer Zbl1138.14002MR2393625
- S. Rams, Defect and Hodge numbers of hypersurfaces, (2007) Zbl1144.14033MR2405239
- C. Schoen, Algebraic cycles on certain desingularized nodal hypersurfaces, Math. Ann. 270 (1985), 17-27 Zbl0533.14002MR769603
- J. H. M. Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), 211-223 Zbl0347.14001MR453735
- J. H. M. Steenbrink, Adjunction conditions for one-forms on surfaces in projective three-space, Singularities and computer algebra 324 (2006), 301-314, Cambridge Univ. Press, Cambridge Zbl1105.14008MR2228236
- C. Vosion, Hodge theory and complex algebraic geometry. II, 77 (2003), Cambridge Univ. Press, Cambridge MR1997577
- R. Wazir, Arithmetic on elliptic threefolds, Compos. Math. 140 (2004), 567-580 Zbl1060.11039MR2041769
- J. Werner, Kleine Auflösungen spezieller dreidimensionaler Varietäten, 186 (1987), Universität Bonn Mathematisches Institut, Bonn Zbl0657.14021MR930270
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.