Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces

Klaus Hulek[1]; Remke Kloosterman[2]

  • [1] Leibniz Universität Hannover Institut für Algebraische Geometrie Welfengarten 1 30167 Hannover (Germany)
  • [2] Humboldt Universität zu Berlin Institut für Mathematik Unter den Linden 6 10099 Berlin (Germany)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 3, page 1133-1179
  • ISSN: 0373-0956

Abstract

top
In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective 4 -space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.

How to cite

top

Hulek, Klaus, and Kloosterman, Remke. "Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces." Annales de l’institut Fourier 61.3 (2011): 1133-1179. <http://eudml.org/doc/219798>.

@article{Hulek2011,
abstract = {In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective $4$-space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.},
affiliation = {Leibniz Universität Hannover Institut für Algebraische Geometrie Welfengarten 1 30167 Hannover (Germany); Humboldt Universität zu Berlin Institut für Mathematik Unter den Linden 6 10099 Berlin (Germany)},
author = {Hulek, Klaus, Kloosterman, Remke},
journal = {Annales de l’institut Fourier},
keywords = {Mordel-Weil group of Elliptic threefolds; Cohomology of singular varieties; Mixed Hodge structures; Mordell-Weil group of elliptic threefolds; cohomology of singular varieties; mixed Hodge stuctures},
language = {eng},
number = {3},
pages = {1133-1179},
publisher = {Association des Annales de l’institut Fourier},
title = {Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces},
url = {http://eudml.org/doc/219798},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Hulek, Klaus
AU - Kloosterman, Remke
TI - Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hypersurfaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 1133
EP - 1179
AB - In this paper we give a method for calculating the rank of a general elliptic curve over the field of rational functions in two variables. We reduce this problem to calculating the cohomology of a singular hypersurface in a weighted projective $4$-space. We then give a method for calculating the cohomology of a certain class of singular hypersurfaces, extending work of Dimca for the isolated singularity case.
LA - eng
KW - Mordel-Weil group of Elliptic threefolds; Cohomology of singular varieties; Mixed Hodge structures; Mordell-Weil group of elliptic threefolds; cohomology of singular varieties; mixed Hodge stuctures
UR - http://eudml.org/doc/219798
ER -

References

top
  1. V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535 Zbl0829.14023MR1269718
  2. N. Behrens, Calabi-Yau 3-Varietäten mit elliptischen Faserungen über Del Pezzo-Flächen, (2006), Diplomarbeit, Leibniz Universität Hannover, Hannover 
  3. C. H. Clemens, Double solids, Adv. in Math. 47 (1983), 107-230 Zbl0509.14045MR690465
  4. D. A. Cox, The Noether-Lefschetz locus of regular elliptic surfaces with section and p g 2 , Amer. J. Math. 112 (1990), 289-329 Zbl0721.14017MR1047301
  5. S. Cynk, Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), 325-331 Zbl0983.14017MR1828878
  6. P. Deligne, A. Dimca, Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulières, Ann. Sci. École Norm. Sup. (4) 23 (1990), 645-656 Zbl0743.14028MR1072821
  7. A. Dimca, Topics on real and complex singularities, (1987), Friedr. Vieweg & Sohn, Braunschweig Zbl0628.14001MR1013785
  8. A. Dimca, Betti numbers of hypersurfaces and defects of linear systems, Duke Math. J. 60 (1990), 285-298 Zbl0729.14017MR1047124
  9. A. Dimca, Singularities and topology of hypersurfaces, (1992), Springer-Verlag, New York Zbl0753.57001MR1194180
  10. A. Dimca, M. Saito, L. Wotzlaw, A generalization of Griffiths’ theorem on rational integrals, II, (2007) Zbl1192.14009
  11. B. van Geemen, J. Werner, Nodal quintics in P 4 , Arithmetic of complex manifolds (Erlangen, 1988) 1399 (1989), 48-59, Springer, Berlin Zbl0697.14027MR1034256
  12. P. A. Griffiths, On the periods of certain rational integrals. II, Ann. of Math. (2) 90 (1969), 496-541 Zbl0215.08103MR260733
  13. M. Grooten, J. H. M. Steenbrink, Defect and Hodge numbers of hypersurfaces, (2007) 
  14. T. de Jong, G. Pfister, Local analytic geometry, (2000), Friedr. Vieweg & Sohn, Braunschweig Zbl0959.32011MR1760953
  15. R. Kloosterman, Elliptic K 3 surfaces with geometric Mordell-Weil rank 15, Canad. Math. Bull. 50 (2007), 215-226 Zbl1162.14024MR2317444
  16. R. Kloosterman, Higher Noether-Lefschetz loci of elliptic surfaces, J. Differential Geom. 76 (2007), 293-316 Zbl1141.14019MR2330416
  17. R. Kloosterman, On the classification of degree 1 elliptic threefolds with constant j -invariant, (2008) Zbl1283.14014
  18. R. Kloosterman, A different method to calculate the rank of an elliptic threefold, (to appear in Rocky Mountain J. Math., available at arxiv:0812.3222) 
  19. R. Miranda, Smooth models for elliptic threefolds, The birational geometry of degenerations (Cambridge, Mass., 1981) 29 (1983), 85-133, Birkhäuser Boston, Mass. Zbl0583.14014MR690264
  20. R. Miranda, The basic theory of elliptic surfaces, (1989), ETS Editrice, Pisa Zbl0744.14026MR1078016
  21. K. Oguiso, T. Shioda, The Mordell-Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul 40 (1991), 83-99 Zbl0757.14011MR1104782
  22. C. A. M. Peters, J. H. M. Steenbrink, Mixed Hodge structures, 52 (2008), Springer Zbl1138.14002MR2393625
  23. S. Rams, Defect and Hodge numbers of hypersurfaces, (2007) Zbl1144.14033MR2405239
  24. C. Schoen, Algebraic cycles on certain desingularized nodal hypersurfaces, Math. Ann. 270 (1985), 17-27 Zbl0533.14002MR769603
  25. J. H. M. Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math. 34 (1977), 211-223 Zbl0347.14001MR453735
  26. J. H. M. Steenbrink, Adjunction conditions for one-forms on surfaces in projective three-space, Singularities and computer algebra 324 (2006), 301-314, Cambridge Univ. Press, Cambridge Zbl1105.14008MR2228236
  27. C. Vosion, Hodge theory and complex algebraic geometry. II, 77 (2003), Cambridge Univ. Press, Cambridge MR1997577
  28. R. Wazir, Arithmetic on elliptic threefolds, Compos. Math. 140 (2004), 567-580 Zbl1060.11039MR2041769
  29. J. Werner, Kleine Auflösungen spezieller dreidimensionaler Varietäten, 186 (1987), Universität Bonn Mathematisches Institut, Bonn Zbl0657.14021MR930270

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.