Levi-flat filling of real two-spheres in symplectic manifolds (II)

Hervé Gaussier[1]; Alexandre Sukhov[2]

  • [1] Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France
  • [2] Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathé-matique, 59655 Villeneuve d’Ascq, Cedex, France

Annales de la faculté des sciences de Toulouse Mathématiques (2012)

  • Volume: 21, Issue: 4, page 783-816
  • ISSN: 0240-2963

Abstract

top
We consider a compact almost complex manifold ( M , J , ω ) with smooth Levi convex boundary M and a symplectic tame form ω . Suppose that S 2 is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into M . We prove a result on filling S 2 by holomorphic discs.

How to cite

top

Gaussier, Hervé, and Sukhov, Alexandre. "Levi-flat filling of real two-spheres in symplectic manifolds (II)." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 783-816. <http://eudml.org/doc/250997>.

@article{Gaussier2012,
abstract = {We consider a compact almost complex manifold $(M,J,\omega )$ with smooth Levi convex boundary $\partial M$ and a symplectic tame form $\omega $. Suppose that $S^2$ is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into $\partial M$. We prove a result on filling $S^2$ by holomorphic discs.},
affiliation = {Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France; Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathé-matique, 59655 Villeneuve d’Ascq, Cedex, France},
author = {Gaussier, Hervé, Sukhov, Alexandre},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Levi-flat hypersurfaces; foliations by -holomorphic discs; 2-spheres; hyperbolic points},
language = {eng},
month = {10},
number = {4},
pages = {783-816},
publisher = {Université Paul Sabatier, Toulouse},
title = {Levi-flat filling of real two-spheres in symplectic manifolds (II)},
url = {http://eudml.org/doc/250997},
volume = {21},
year = {2012},
}

TY - JOUR
AU - Gaussier, Hervé
AU - Sukhov, Alexandre
TI - Levi-flat filling of real two-spheres in symplectic manifolds (II)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 783
EP - 816
AB - We consider a compact almost complex manifold $(M,J,\omega )$ with smooth Levi convex boundary $\partial M$ and a symplectic tame form $\omega $. Suppose that $S^2$ is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into $\partial M$. We prove a result on filling $S^2$ by holomorphic discs.
LA - eng
KW - Levi-flat hypersurfaces; foliations by -holomorphic discs; 2-spheres; hyperbolic points
UR - http://eudml.org/doc/250997
ER -

References

top
  1. Arnold (V.I.).— On a characteristic class appearing in the quantization condition, Funktsion. Anal. i Prilozhen. 1, p. 1-14 (1967). Zbl0175.20303MR211415
  2. Bedford (E.), Klingenberg (W.).— On the envelope of holomorphy of a 2 -sphere in C 2 . J. Amer. Math. Soc.4, p. 623-646 (1991). Zbl0736.32009MR1094437
  3. Chirka (E.).— Lectures on almost complex analysis, Lecture notes (2003). 
  4. Chirka (E.).— Complex analytic sets. Kluwer (1989). Zbl0683.32002MR1111477
  5. Eliashberg (Y.).— Filling by holomorphic discs and its applications. Geometry of low-dimensional manifolds, 2 (Durham, 1989), p. 45-67, London Math. Soc. Lecture Note Ser., 151, Cambridge Univ. Press, Cambridge (1990). Zbl0731.53036MR1171908
  6. Eliashberg (Y.), Thurston (W.).— Confoliations. University Lecture Series, 13. American Mathematical Society, Providence, RI, x+66 pp (1998). Zbl0893.53001MR1483314
  7. Fornaess (J.E.), Ma (D.).— A 2 -sphere in C 2 that cannot be filled in with analytic disks. Internat. Math. Res. Notices1, p. 17-22 (1995). Zbl0866.57023MR1317640
  8. Forstneric (F.).— Complex tangents of real surfaces in complex surfaces. Duke Math. J.67, p. 353-376 (1992). Zbl0761.53032MR1177310
  9. Gromov (M.).— Pseudoholomorphic curves in symplectic manifolds. Invent. Math.82, p. 307-347 (1985). Zbl0592.53025MR809718
  10. Gaussier (H.), Sukhov (A.).— Levi-flat filling of real two-spheres in symplectic manifolds (I). Annales Fac. Sci. Toulouse, XX, p. 515-539 (2011). Zbl1242.53107MR2894837
  11. Hind (R.).— Filling by holomorphic disks with weakly pseudoconvex boundary conditions. Geom. Funct. Anal.7, p. 462-495 (1997). Zbl0884.53024MR1466335
  12. Hofer (H.), Lizan (V.), Sikorav (J.C.).— On genericity for holomorphic curves in four-dimensional almost-complex manifolds The Journal of Geometric Analysis7, p. 149-159 (1998). Zbl0911.53014MR1630789
  13. Ivashkovich (S.), Shevchishin (V.).— Gromov’s compactness theorem for J-complex curves with boundary, IMRN, 22 (2000). Zbl0994.53010
  14. Kruzhilin (N.).— Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in 2 . Math. USSR Izvetsia39, 1151-1187 (1992). Zbl0778.32003MR1152210
  15. Labourie (F.).— Exemples de courbes pseudo-holomorphes en géométrie riemannienne, in Holomorphic curves in symplectic geometry, p. 251-269, Progr. Math. 117, Birkhäuser, Basel (1994). MR1274933
  16. McDuff (D.), Salamon (D.).— J -holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, 52. American Mathematical Society, Providence, RI, 2004. xii+669 pp. Zbl1064.53051MR2045629
  17. Nemirovski (S.).— Complex analysis and differential topology on complex surfaces. Russian Math. Surveys54, 729-752 (1999). Zbl0971.32016MR1741278
  18. Pansu (P.).— Compactness. in Holomorphic curves in symplectic geometry, 233-249, Progr. Math., 117, Birkhäuser, Basel (1994). MR1274932
  19. Sikorav (J.C.).— Some properties of holomorphic curves in almost complex manifolds. in Holomorphic curves in symplectic geometry, p. 165-189, Progr. Math., 117, Birkhäuser, Basel (1994). MR1274929
  20. Sukhov (A.), Tumanov (A.).— Regularization of almost complex structures and gluing holomorphic discs to tori,Ann. Scuola Norm. Sup. Pisa (5),X, p. 389-411 (2011). Zbl1228.32016MR2856153
  21. Ye (R.).— Filling by holomorphic curves in symplectic 4 -manifolds. Trans. Amer. Math. Soc.350, p. 213-250 (1998). Zbl0936.53047MR1422913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.