Levi-flat filling of real two-spheres in symplectic manifolds (II)
Hervé Gaussier[1]; Alexandre Sukhov[2]
- [1] Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France
- [2] Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathé-matique, 59655 Villeneuve d’Ascq, Cedex, France
Annales de la faculté des sciences de Toulouse Mathématiques (2012)
- Volume: 21, Issue: 4, page 783-816
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGaussier, Hervé, and Sukhov, Alexandre. "Levi-flat filling of real two-spheres in symplectic manifolds (II)." Annales de la faculté des sciences de Toulouse Mathématiques 21.4 (2012): 783-816. <http://eudml.org/doc/250997>.
@article{Gaussier2012,
abstract = {We consider a compact almost complex manifold $(M,J,\omega )$ with smooth Levi convex boundary $\partial M$ and a symplectic tame form $\omega $. Suppose that $S^2$ is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into $\partial M$. We prove a result on filling $S^2$ by holomorphic discs.},
affiliation = {Université Joseph Fourier, 100 rue des Maths, 38402 Saint Martin d’Hères, France; Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé, U.F.R. de Mathé-matique, 59655 Villeneuve d’Ascq, Cedex, France},
author = {Gaussier, Hervé, Sukhov, Alexandre},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Levi-flat hypersurfaces; foliations by -holomorphic discs; 2-spheres; hyperbolic points},
language = {eng},
month = {10},
number = {4},
pages = {783-816},
publisher = {Université Paul Sabatier, Toulouse},
title = {Levi-flat filling of real two-spheres in symplectic manifolds (II)},
url = {http://eudml.org/doc/250997},
volume = {21},
year = {2012},
}
TY - JOUR
AU - Gaussier, Hervé
AU - Sukhov, Alexandre
TI - Levi-flat filling of real two-spheres in symplectic manifolds (II)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2012/10//
PB - Université Paul Sabatier, Toulouse
VL - 21
IS - 4
SP - 783
EP - 816
AB - We consider a compact almost complex manifold $(M,J,\omega )$ with smooth Levi convex boundary $\partial M$ and a symplectic tame form $\omega $. Suppose that $S^2$ is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into $\partial M$. We prove a result on filling $S^2$ by holomorphic discs.
LA - eng
KW - Levi-flat hypersurfaces; foliations by -holomorphic discs; 2-spheres; hyperbolic points
UR - http://eudml.org/doc/250997
ER -
References
top- Arnold (V.I.).— On a characteristic class appearing in the quantization condition, Funktsion. Anal. i Prilozhen. 1, p. 1-14 (1967). Zbl0175.20303MR211415
- Bedford (E.), Klingenberg (W.).— On the envelope of holomorphy of a -sphere in . J. Amer. Math. Soc.4, p. 623-646 (1991). Zbl0736.32009MR1094437
- Chirka (E.).— Lectures on almost complex analysis, Lecture notes (2003).
- Chirka (E.).— Complex analytic sets. Kluwer (1989). Zbl0683.32002MR1111477
- Eliashberg (Y.).— Filling by holomorphic discs and its applications. Geometry of low-dimensional manifolds, 2 (Durham, 1989), p. 45-67, London Math. Soc. Lecture Note Ser., 151, Cambridge Univ. Press, Cambridge (1990). Zbl0731.53036MR1171908
- Eliashberg (Y.), Thurston (W.).— Confoliations. University Lecture Series, 13. American Mathematical Society, Providence, RI, x+66 pp (1998). Zbl0893.53001MR1483314
- Fornaess (J.E.), Ma (D.).— A -sphere in that cannot be filled in with analytic disks. Internat. Math. Res. Notices1, p. 17-22 (1995). Zbl0866.57023MR1317640
- Forstneric (F.).— Complex tangents of real surfaces in complex surfaces. Duke Math. J.67, p. 353-376 (1992). Zbl0761.53032MR1177310
- Gromov (M.).— Pseudoholomorphic curves in symplectic manifolds. Invent. Math.82, p. 307-347 (1985). Zbl0592.53025MR809718
- Gaussier (H.), Sukhov (A.).— Levi-flat filling of real two-spheres in symplectic manifolds (I). Annales Fac. Sci. Toulouse, XX, p. 515-539 (2011). Zbl1242.53107MR2894837
- Hind (R.).— Filling by holomorphic disks with weakly pseudoconvex boundary conditions. Geom. Funct. Anal.7, p. 462-495 (1997). Zbl0884.53024MR1466335
- Hofer (H.), Lizan (V.), Sikorav (J.C.).— On genericity for holomorphic curves in four-dimensional almost-complex manifolds The Journal of Geometric Analysis7, p. 149-159 (1998). Zbl0911.53014MR1630789
- Ivashkovich (S.), Shevchishin (V.).— Gromov’s compactness theorem for J-complex curves with boundary, IMRN, 22 (2000). Zbl0994.53010
- Kruzhilin (N.).— Two-dimensional spheres in the boundaries of strictly pseudoconvex domains in . Math. USSR Izvetsia39, 1151-1187 (1992). Zbl0778.32003MR1152210
- Labourie (F.).— Exemples de courbes pseudo-holomorphes en géométrie riemannienne, in Holomorphic curves in symplectic geometry, p. 251-269, Progr. Math. 117, Birkhäuser, Basel (1994). MR1274933
- McDuff (D.), Salamon (D.).— -holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, 52. American Mathematical Society, Providence, RI, 2004. xii+669 pp. Zbl1064.53051MR2045629
- Nemirovski (S.).— Complex analysis and differential topology on complex surfaces. Russian Math. Surveys54, 729-752 (1999). Zbl0971.32016MR1741278
- Pansu (P.).— Compactness. in Holomorphic curves in symplectic geometry, 233-249, Progr. Math., 117, Birkhäuser, Basel (1994). MR1274932
- Sikorav (J.C.).— Some properties of holomorphic curves in almost complex manifolds. in Holomorphic curves in symplectic geometry, p. 165-189, Progr. Math., 117, Birkhäuser, Basel (1994). MR1274929
- Sukhov (A.), Tumanov (A.).— Regularization of almost complex structures and gluing holomorphic discs to tori,Ann. Scuola Norm. Sup. Pisa (5),X, p. 389-411 (2011). Zbl1228.32016MR2856153
- Ye (R.).— Filling by holomorphic curves in symplectic -manifolds. Trans. Amer. Math. Soc.350, p. 213-250 (1998). Zbl0936.53047MR1422913
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.