Computations with Witt vectors of length 3

Luís R. A. Finotti[1]

  • [1] Department of Mathematics University of Tennessee Knoxville, TN 37996, USA

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 2, page 417-454
  • ISSN: 1246-7405

Abstract

top
In this paper we describe how to perform computations with Witt vectors of length 3 in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the j -invariant of the canonical lifting as a function on the j -invariant of the ordinary elliptic curve in characteristic p .

How to cite

top

Finotti, Luís R. A.. "Computations with Witt vectors of length $3$." Journal de Théorie des Nombres de Bordeaux 23.2 (2011): 417-454. <http://eudml.org/doc/219820>.

@article{Finotti2011,
abstract = {In this paper we describe how to perform computations with Witt vectors of length $3$ in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the $j$-invariant of the canonical lifting as a function on the $j$-invariant of the ordinary elliptic curve in characteristic $p$.},
affiliation = {Department of Mathematics University of Tennessee Knoxville, TN 37996, USA},
author = {Finotti, Luís R. A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Witt vectors; elliptic curves; canonical lifting; pseudo-canonical lifting; modular polynomial},
language = {eng},
month = {6},
number = {2},
pages = {417-454},
publisher = {Société Arithmétique de Bordeaux},
title = {Computations with Witt vectors of length $3$},
url = {http://eudml.org/doc/219820},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Finotti, Luís R. A.
TI - Computations with Witt vectors of length $3$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/6//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 2
SP - 417
EP - 454
AB - In this paper we describe how to perform computations with Witt vectors of length $3$ in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the $j$-invariant of the canonical lifting as a function on the $j$-invariant of the ordinary elliptic curve in characteristic $p$.
LA - eng
KW - Witt vectors; elliptic curves; canonical lifting; pseudo-canonical lifting; modular polynomial
UR - http://eudml.org/doc/219820
ER -

References

top
  1. R. Broker, K. Lauter, and A. V. Sutherland, Modular polynomials via isogeny volcanoes. Available at http://arxiv.org/abs/1001.0402v1, 2010. Zbl1267.11125
  2. K. Davis and W. Webb, A binomial coefficient congruence modulo prime powers. J. Number Theory 43(1) (1993), 20–23. Zbl0769.11008MR1200804
  3. E. de Shalit, Kronecker’s polynomial, supersingular elliptic curves, and p -adic periods of modular curves. In p -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), volume 165 of Contemp. Math., pages 135–148. Amer. Math. Soc., Providence, RI, 1994. Zbl0863.14015MR1279607
  4. M. Deuring, Die typen der multiplikatorenringe elliptischer funktionenköper. Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272. Zbl0025.02003MR5125
  5. N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 21–76. Amer. Math. Soc., Providence, RI, 1998. Zbl0915.11036MR1486831
  6. L. R. A. Finotti, Degrees of the elliptic Teichmüller lift. J. Number Theory 95(2) (2002), 123–141. Zbl1043.11053MR1924093
  7. L. R. A. Finotti, Minimal degree liftings of hyperelliptic curves. J. Math. Sci. Univ. Tokyo 11(1) (2004), 1–47. Zbl1116.11043MR2044910
  8. L. R. A. Finotti, Minimal degree liftings in characteristic 2. J. Pure Appl. Algebra, 207(3):631–673, 2006. Zbl1139.11028MR2265544
  9. L. R. A. Finotti, A formula for the supersingular polynomial. Acta Arith. 139(3) (2009), 265–273. Zbl1268.11085MR2545930
  10. L. R. A. Finotti, Lifting the j-invariant: Questions of Mazur and Tate. J. Number Theory 130(3) (2010), 620 – 638. Zbl1217.11059MR2584845
  11. M. J. Greenberg, Schemata over local rings. Ann. of Math. (2) 73 (1961), 624–648. Zbl0115.39004MR126449
  12. N. Jacobson, Basic Algebra, volume 2. W. H. Freeman and Company, second edition, 1984. Zbl0557.16001
  13. M. Kaneko and D. Zagier, Supersingular j -invariants, hypergeometric series, and Atkin’s orthogonal polynomials. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 97–126. Amer. Math. Soc., Providence, RI, 1998. Zbl0955.11018MR1486833
  14. S. Lang, On quasi algebraic closure. Ann. of Math. (2) 55 (1952), 373–390. Zbl0046.26202MR46388
  15. S. Lang, Elliptic Functions. Volume 112 of Garduate Texts in Mathematics, Springer-Verlag, second edition, 1986. Zbl0615.14018MR890960
  16. J. Lubin, J.-P. Serre, and J. Tate, Elliptic curves and formal groups. Proc. of Woods Hole summer institute in algebraic geometry, 1964. Unpublished. Available at http://www.ma.utexas.edu/users/voloch/lst.html. Zbl0156.04105
  17. J.-P. Serre, Local Fields. Volume 67 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
  18. J. H. Silverman, The Arithmetic of Elliptic Curves. Volume 106 of Graduate Texts in Mathematics, Springer-Verlag, 1985. Zbl1194.11005
  19. J. F. Voloch and J. L. Walker, Euclidean weights of codes from elliptic curves over rings. Trans. Amer. Math. Soc. 352(11) (2000), 5063–5076. Zbl0963.94047MR1778505

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.