Computations with Witt vectors of length
- [1] Department of Mathematics University of Tennessee Knoxville, TN 37996, USA
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 2, page 417-454
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topFinotti, Luís R. A.. "Computations with Witt vectors of length $3$." Journal de Théorie des Nombres de Bordeaux 23.2 (2011): 417-454. <http://eudml.org/doc/219820>.
@article{Finotti2011,
abstract = {In this paper we describe how to perform computations with Witt vectors of length $3$ in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the $j$-invariant of the canonical lifting as a function on the $j$-invariant of the ordinary elliptic curve in characteristic $p$.},
affiliation = {Department of Mathematics University of Tennessee Knoxville, TN 37996, USA},
author = {Finotti, Luís R. A.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Witt vectors; elliptic curves; canonical lifting; pseudo-canonical lifting; modular polynomial},
language = {eng},
month = {6},
number = {2},
pages = {417-454},
publisher = {Société Arithmétique de Bordeaux},
title = {Computations with Witt vectors of length $3$},
url = {http://eudml.org/doc/219820},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Finotti, Luís R. A.
TI - Computations with Witt vectors of length $3$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/6//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 2
SP - 417
EP - 454
AB - In this paper we describe how to perform computations with Witt vectors of length $3$ in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the $j$-invariant of the canonical lifting as a function on the $j$-invariant of the ordinary elliptic curve in characteristic $p$.
LA - eng
KW - Witt vectors; elliptic curves; canonical lifting; pseudo-canonical lifting; modular polynomial
UR - http://eudml.org/doc/219820
ER -
References
top- R. Broker, K. Lauter, and A. V. Sutherland, Modular polynomials via isogeny volcanoes. Available at http://arxiv.org/abs/1001.0402v1, 2010. Zbl1267.11125
- K. Davis and W. Webb, A binomial coefficient congruence modulo prime powers. J. Number Theory 43(1) (1993), 20–23. Zbl0769.11008MR1200804
- E. de Shalit, Kronecker’s polynomial, supersingular elliptic curves, and -adic periods of modular curves. In -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), volume 165 of Contemp. Math., pages 135–148. Amer. Math. Soc., Providence, RI, 1994. Zbl0863.14015MR1279607
- M. Deuring, Die typen der multiplikatorenringe elliptischer funktionenköper. Abh. Math. Sem. Univ. Hamburg 14 (1941), 197–272. Zbl0025.02003MR5125
- N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 21–76. Amer. Math. Soc., Providence, RI, 1998. Zbl0915.11036MR1486831
- L. R. A. Finotti, Degrees of the elliptic Teichmüller lift. J. Number Theory 95(2) (2002), 123–141. Zbl1043.11053MR1924093
- L. R. A. Finotti, Minimal degree liftings of hyperelliptic curves. J. Math. Sci. Univ. Tokyo 11(1) (2004), 1–47. Zbl1116.11043MR2044910
- L. R. A. Finotti, Minimal degree liftings in characteristic 2. J. Pure Appl. Algebra, 207(3):631–673, 2006. Zbl1139.11028MR2265544
- L. R. A. Finotti, A formula for the supersingular polynomial. Acta Arith. 139(3) (2009), 265–273. Zbl1268.11085MR2545930
- L. R. A. Finotti, Lifting the j-invariant: Questions of Mazur and Tate. J. Number Theory 130(3) (2010), 620 – 638. Zbl1217.11059MR2584845
- M. J. Greenberg, Schemata over local rings. Ann. of Math. (2) 73 (1961), 624–648. Zbl0115.39004MR126449
- N. Jacobson, Basic Algebra, volume 2. W. H. Freeman and Company, second edition, 1984. Zbl0557.16001
- M. Kaneko and D. Zagier, Supersingular -invariants, hypergeometric series, and Atkin’s orthogonal polynomials. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 97–126. Amer. Math. Soc., Providence, RI, 1998. Zbl0955.11018MR1486833
- S. Lang, On quasi algebraic closure. Ann. of Math. (2) 55 (1952), 373–390. Zbl0046.26202MR46388
- S. Lang, Elliptic Functions. Volume 112 of Garduate Texts in Mathematics, Springer-Verlag, second edition, 1986. Zbl0615.14018MR890960
- J. Lubin, J.-P. Serre, and J. Tate, Elliptic curves and formal groups. Proc. of Woods Hole summer institute in algebraic geometry, 1964. Unpublished. Available at http://www.ma.utexas.edu/users/voloch/lst.html. Zbl0156.04105
- J.-P. Serre, Local Fields. Volume 67 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1979. Zbl0423.12016MR554237
- J. H. Silverman, The Arithmetic of Elliptic Curves. Volume 106 of Graduate Texts in Mathematics, Springer-Verlag, 1985. Zbl1194.11005
- J. F. Voloch and J. L. Walker, Euclidean weights of codes from elliptic curves over rings. Trans. Amer. Math. Soc. 352(11) (2000), 5063–5076. Zbl0963.94047MR1778505
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.