An equicharacteristic analogue of Hesselholt's conjecture on cohomology of Witt vectors
Let L/K be a finite Galois extension of complete discrete valued fields of characteristic p. Assume that the induced residue field extension is separable. For an integer n ≥ 0, let denote the ring of Witt vectors of length n with coefficients in . We show that the proabelian group is zero. This is an equicharacteristic analogue of Hesselholt’s conjecture, which was proved before when the discrete valued fields are of mixed characteristic.