On the remainder in the Weyl formula for the Euclidean disk
- [1] Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France)
Séminaire de théorie spectrale et géométrie (2010-2011)
- Volume: 29, page 1-13
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topColin de Verdière, Yves. "On the remainder in the Weyl formula for the Euclidean disk." Séminaire de théorie spectrale et géométrie 29 (2010-2011): 1-13. <http://eudml.org/doc/219821>.
@article{ColindeVerdière2010-2011,
abstract = {We prove a 2-terms Weyl formula for the counting function $N(\mu )$ of the spectrum of the Laplace operator in the Euclidean disk with a sharp remainder estimate $O\left(\mu ^\{2/3\}\right)$.},
affiliation = {Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France)},
author = {Colin de Verdière, Yves},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {lattice point problem; Laplace operator; eigenvalues; Weyl asymptotic formula; Bessel functions},
language = {eng},
pages = {1-13},
publisher = {Institut Fourier},
title = {On the remainder in the Weyl formula for the Euclidean disk},
url = {http://eudml.org/doc/219821},
volume = {29},
year = {2010-2011},
}
TY - JOUR
AU - Colin de Verdière, Yves
TI - On the remainder in the Weyl formula for the Euclidean disk
JO - Séminaire de théorie spectrale et géométrie
PY - 2010-2011
PB - Institut Fourier
VL - 29
SP - 1
EP - 13
AB - We prove a 2-terms Weyl formula for the counting function $N(\mu )$ of the spectrum of the Laplace operator in the Euclidean disk with a sharp remainder estimate $O\left(\mu ^{2/3}\right)$.
LA - eng
KW - lattice point problem; Laplace operator; eigenvalues; Weyl asymptotic formula; Bessel functions
UR - http://eudml.org/doc/219821
ER -
References
top- M. Abramowitz & I. Stegun, Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series55, 10th edition (1972). Zbl0543.33001
- G.B. Airy, On the Intensity of Light in the neighborhood of a Caustic. Transactions of the Cambridge Philosophical Society6:379–402 (1838).
- Y. Colin de Verdière, Nombre de points entiers dans une famille homothétique de domaines de . Ann. Scient. ENS10 (4):559–575 (1977). Zbl0409.58011MR480399
- Y. Colin de Verdière, Spectre joint d’opérateurs pseudo-différentiels qui commutent II. Le cas intégrable. Math. Zeitschrift171:51–73 (1980). Zbl0478.35073MR566483
- Y. Colin de Verdière, V. Guillemin & D. Jerison, Singularities of the wave trace near cluster points of the length spectrum. arXiv:1101.0099v1 (2011). MR2809468
- Y. Colin de Verdière & B. Parisse, Singular Bohr-Sommerfeld rules. Comm. Math. Phys.205(2):459–500 (1999). Zbl1157.81310MR1712567
- Y. Colin de Verdière & San Vũ Ngọc, Singular Bohr-Sommerfeld rules for 2D integrable systems. Ann. Sci. École Norm. Sup. (4)36:1–55 (2003). Zbl1028.81026MR1987976
- V. Guillemin & D. Schaeffer, Remarks on a paper of D. Ludwig. Bull. of the Amer. Math. Soc.79:382–385 (1973). Zbl0256.35008MR410050
- C. S. Herz, On the number of lattice points in a convex set. Amer. J. Math.84: 126–133 (1962). Zbl0113.03703MR139583
- F. Hlawka, Über Integrale auf konvexen Körpern I. Monatsh. Math.54:1–36 (1950). Zbl0036.30902MR37003
- V. Ivrii, The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. Functional Analysis and its Applications14 (2):25–34 (1980). Zbl0453.35068MR575202
- N. V. Kuznecov & B. V. Fedosov, An asymptotic formula for the eigenvalues of a circular membrane. Differencial’nye Uravnenija, 1:1682–1685 (1965) (English translation: Differential Equations 1:1326–1329 (1965)) . Zbl0152.43807MR188590
- V. F. Lazutkin & D. Ya. Terman, Estimation of the remainder term in the Weyl formula. Functional Analysis and its Applications15:299–300 (1982). Zbl0483.35065
- E. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. Journal de Liouville13(2):137–203 (1868).
- F.W.J. Olver, The Asymptotic Expansion of Bessel Functions of Large Order. Phil. Trans. R. Soc. Lond. A247:328–368 (1954). Zbl0070.30801MR67250
- J. G. van der Corput, Über Gitterpunkte in der Ebene. Math. Ann.81(1): 1–20 (1920). Zbl47.0159.01MR1511951
- B. Randol, A lattice-point problem. Trans. Amer. Math. Soc.121:257–268 (1966). Zbl0135.10601MR201407
- H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann.71(4):441–479 (1912). Zbl43.0436.01MR1511670
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.