Characterization of abelian varieties

Yujiro Kawamata

Compositio Mathematica (1981)

  • Volume: 43, Issue: 2, page 253-276
  • ISSN: 0010-437X

How to cite

top

Kawamata, Yujiro. "Characterization of abelian varieties." Compositio Mathematica 43.2 (1981): 253-276. <http://eudml.org/doc/89500>.

@article{Kawamata1981,
author = {Kawamata, Yujiro},
journal = {Compositio Mathematica},
keywords = {Albanese mapping; Kodaira dimension; variation of Hodge structures},
language = {eng},
number = {2},
pages = {253-276},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Characterization of abelian varieties},
url = {http://eudml.org/doc/89500},
volume = {43},
year = {1981},
}

TY - JOUR
AU - Kawamata, Yujiro
TI - Characterization of abelian varieties
JO - Compositio Mathematica
PY - 1981
PB - Sijthoff et Noordhoff International Publishers
VL - 43
IS - 2
SP - 253
EP - 276
LA - eng
KW - Albanese mapping; Kodaira dimension; variation of Hodge structures
UR - http://eudml.org/doc/89500
ER -

References

top
  1. [1] P. Deligne: Theorie de Hodge II. Publ. Math. IHES, 40 (1971) 5-58. Zbl0219.14007MR498551
  2. [2] T. Fujita: On Kaehler fiber spaces over curves. J. Math. Soc. Japan, 30 (1978) 779-794. Zbl0393.14006MR513085
  3. [3] P. Griffiths: Periods of integrals on algebraic manifolds III. Publ. Math. IHES, 38 (1970) 125-180. Zbl0212.53503MR282990
  4. [4] R. Hartshorne: Ample subvarieties of algebraic varieties. Lec. Note in Math. 156, Springer, 1970. Zbl0208.48901MR282977
  5. [5] S. Iitaka: On D-dimensions of algebraic varieties. J. Math. Soc. Japan, 23 (1971), 356-373. Zbl0212.53802MR285531
  6. [6] S. Iitaka: On logarithmic Kodaira dimension of algebraic varieties. Complex Analysis and Algebraic Geometry, 1977, Iwanami, Tokyo. Zbl0351.14016MR569688
  7. [7] S. Iitaka: Logarithmic form of algebraic varieties. J. Fac. Sci. Univ. Tokyo, 23 (1976) 525-544. Zbl0342.14017MR429884
  8. [8] Y. Kawamata: Addition formula of logarithmic Kodaira dimension for morphisms of relative dimension one. Proc. Alg. Geo. Kyoto, 1977, Kinokuniya, Tokyo, 207-217. Zbl0437.14018MR578860
  9. [9] Y. Kawamata and E. Viehweg: On a characterization of an abelian variety in the classification theory of algebraic varieties. Compositio Math., 41 (1980) 355-360. Zbl0417.14033MR589087
  10. [10] K. Kodaira: Holomorphic mappings of polydiscs into compact complex manifolds. J. Diff. Geo., 6 (1971) 33-46. Zbl0227.32008MR301228
  11. [11] F. Sakai: Kodaira dimensions of complements of divisors. Complex Analysis and Algebraic Geometry, 1977, Iwanami, 239-257. Zbl0375.14009MR590433
  12. [12] W. Schmid: Variation of Hodge structure: the singularities of period mapping. Inv. Math., 22 (1973) 211-319. Zbl0278.14003MR382272
  13. [13] K. Ueno: Classification theory of algebraic varieties and compact complex spaces. Lec. Note in Math. 439, Springer, 1975. Zbl0299.14007MR506253
  14. [14] K. Ueno: On algebraic fiber spaces of abelian varieties. Math. Ann., 237 (1978) 1-22. Zbl0368.14013
  15. [15] K. Ueno: Classification of algebraic varieties II. Proc. Alg. Geo. Kyoto, 1977, Kinokuniya, Tokyo, 693-708. Zbl0407.14011MR372266
  16. [16] E. Viehweg: Canonical divisors and the additivity of the Kodaira dimensions for morphisms of relative dimension one. Compositio Math., 35 (1977), 197-223. Zbl0357.14014MR569690
  17. [17] E. Viehweg: Klassifikationstheorie algebraischer Varietaeten der Dimension drei. Compositio Math., 41 (1980) 361-400. Zbl0414.14017MR589088

Citations in EuDML Documents

top
  1. Tsuyoshi Fujiwara, Varieties of small Kodaira dimension whose cotangent bundles are semiample
  2. Shigeharu Takayama, [unknown]
  3. Jörg Winkelmann, Degeneracy of entire curves in log surfaces with q ¯ = 2
  4. Gerd Dethloff, Steven S.-Y. Lu, Logarithmic Surfaces and Hyperbolicity
  5. Jungkai Alfred Chen, Christopher D. Hacon, Varieties with P 3 ( X ) = 4 and q ( X ) = dim ( X )
  6. Paolo Cascini, Subsheaves of the cotangent bundle
  7. F. Campana, Remarques sur les groupes de Kähler nilpotents
  8. Christophe Mourougane, Shigeharu Takayama, Hodge metrics and the curvature of higher direct images
  9. Thomas Peternell, Towards a Mori theory on compact Kähler threefolds III
  10. Benoît Claudon, Andreas Höring, Compact Kähler manifolds with compactifiable universal cover

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.