On Brody and entire curves

Jörg Winkelmann

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 1, page 25-46
  • ISSN: 0037-9484

Abstract

top
We discuss an example of an open subset of a torus which admits a dense entire curve, but no dense Brody curve.

How to cite

top

Winkelmann, Jörg. "On Brody and entire curves." Bulletin de la Société Mathématique de France 135.1 (2007): 25-46. <http://eudml.org/doc/272472>.

@article{Winkelmann2007,
abstract = {We discuss an example of an open subset of a torus which admits a dense entire curve, but no dense Brody curve.},
author = {Winkelmann, Jörg},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Brody lemma; entire curve; hyperbolicity; abelian variety},
language = {eng},
number = {1},
pages = {25-46},
publisher = {Société mathématique de France},
title = {On Brody and entire curves},
url = {http://eudml.org/doc/272472},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Winkelmann, Jörg
TI - On Brody and entire curves
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 1
SP - 25
EP - 46
AB - We discuss an example of an open subset of a torus which admits a dense entire curve, but no dense Brody curve.
LA - eng
KW - Brody lemma; entire curve; hyperbolicity; abelian variety
UR - http://eudml.org/doc/272472
ER -

References

top
  1. [1] N. U. Arakeljan – « Approximation complexe et propriétés des fonctions analytiques », in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, vol. 2, Gauthier-Villars, 1971, p. 595–600. Zbl0234.30029MR422623
  2. [2] A. Bloch – « Sur les systèmes de fonctions uniformes satisfaisant à l’equation d’une variété algébrique dont l’irrégularité dépasse la dimension », J. Math. Pures Appl.5 (1926), p. 19–66. Zbl52.0373.04JFM52.0373.04
  3. [3] R. Brody – « Compact manifolds in hyperbolicity », Trans. Amer. Math. Soc.235 (1978), p. 213–219. Zbl0416.32013MR470252
  4. [4] F. Campana – « Orbifolds, special varieties and classification theory », Ann. Inst. Fourier (Grenoble) 54 (2004), p. 499–630. Zbl1062.14014MR2097416
  5. [5] G. Faltings – « Endlichkeitssätze für abelsche Varietäten über Zahlkörpern », Invent. Math.73 (1983), p. 349–366. Zbl0588.14026MR718935
  6. [6] Y. Kawamata – « On Bloch’s conjecture », Invent. Math.57 (1980), p. 97–100. Zbl0569.32012MR564186
  7. [7] S. Kobayashi – Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften, vol. 318, Springer, 1998. Zbl0917.32019MR1635983
  8. [8] S. Lang – Introduction to complex hyperbolic spaces, Springer, 1987. Zbl0628.32001MR886677
  9. [9] —, Number theory. III, Encyclopaedia of Mathematical Sciences, vol. 60, Springer, 1991, Diophantine geometry. Zbl0744.14012MR1112552
  10. [10] H. L. Royden – « Remarks on the Kobayashi metric », in Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970), Lecture Notes in Math., vol. 185, Springer, 1971, p. 125–137. Lecture Notes in Math., Vol. 185. Zbl0218.32012MR304694
  11. [11] P. Vojta – Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer, 1987. Zbl0609.14011MR883451
  12. [12] L. Zalcman – « Normal families: new perspectives », Bull. Amer. Math. Soc. (N.S.) 35 (1998), p. 215–230. Zbl1037.30021MR1624862

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.