Persistence of normally expanded submanifolds with boundary or corners
- [1] Université Paris 13 LAGA Institut Galilée 99 avenue J.B. Clément 93430 Villetaneuse (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 1, page 79-104
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- K. Bekka, C-régularité et trivialité topologique, Singularity theory and its applications, Part I (Coventry, 988/1989) 1462 (1991), 42-62, Springer, Berlin Zbl0733.58003MR1129023
- Pierre Berger, Persistence of stratifications of normally expanded laminations, C. R. Math. Acad. Sci. Paris 346 (2008), 767-772 Zbl1153.58001MR2427079
- Pierre Berger, Persistence of laminations, Bull. Braz. Math. Soc. (N.S.) 41 (2010), 259-319 Zbl1225.37037
- J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227-380 Zbl0101.16001MR140120
- A. Douady, Variétés à bord anguleux et voisinages tubulaires, Séminaire Henri Cartan, 1961/62, Exp. 1 (1961/1962), Secrétariat mathématique, Paris Zbl0116.40304MR160221
- M. W. Hirsch, Differential topology, (1976), Springer-Verlag, New York Zbl0356.57001MR448362
- M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, (1977), Springer-Verlag, Berlin Zbl0355.58009MR501173
- R. Mañé, Persistent manifolds are normally hyperbolic, Trans. Amer. Math. Soc. 246 (1978), 261-283 Zbl0362.58014MR515539
- J. N. Mather, Stratifications and mappings, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 971) (1973), 195-232, Academic Press, New York Zbl0286.58003MR368064
- M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199 Zbl0201.56305MR240824
- R. Thom, Local topological properties of differentiable mappings, Differential Analysis, Bombay Colloq. (1964), 191-202, Oxford Univ. Press, London Zbl0151.32002MR195102
- H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) (1965), 205-244, Princeton Univ. Press, Princeton, N. J. Zbl0129.39402MR188486