Optimal Sobolev embeddings

Pick, Luboš

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 156-199

How to cite

top

Pick, Luboš. "Optimal Sobolev embeddings." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 1999. 156-199. <http://eudml.org/doc/219953>.

@inProceedings{Pick1999,
author = {Pick, Luboš},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)},
location = {Praha},
pages = {156-199},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Optimal Sobolev embeddings},
url = {http://eudml.org/doc/219953},
year = {1999},
}

TY - CLSWK
AU - Pick, Luboš
TI - Optimal Sobolev embeddings
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1999
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 156
EP - 199
KW - Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)
UR - http://eudml.org/doc/219953
ER -

References

top
  1. Adams D.R., A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128 (1988), 385–398. (1988) Zbl0672.31008MR0960950
  2. Avantaggiati A., On compact imbedding theorems in weighted Sobolev spaces, Czechoslovak Math. J. 29 (104) (1979), 635–648. (1979) MR0548224
  3. Bennett C., Rudnick K., On Lorentz-Zygmund spaces, Dissert. Math. 175 (1980), 1–72. (1980) Zbl0456.46028MR0576995
  4. Bennett C., Sharpley R., Interpolation of Operators, Academic Press, Boston 1988. (1988) Zbl0647.46057MR0928802
  5. Boyd D. W., Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245–1254. (1969) Zbl0184.34802MR0412788
  6. Brézis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Eq. 5 (1980), 773–789. (1980) Zbl0437.35071MR0579997
  7. Calderón A. P., Spaces between L 1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299. (1966) MR0203444
  8. Carro M. J., Pick L., Soria J., Stepanov V. D., On embeddings between classical Lorentz spaces, Centre de Recerca Barcelona, preprint no. 385 (1998), 1–36. (1998) MR1841071
  9. Cianchi A., A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 (1996), 39–65. (1996) Zbl0860.46022MR1406683
  10. Cianchi A., Pick L., Sobolev embeddings into , BMO, VMO, and . Ark. Mat. 36 (1998), 317–340. (1998) Zbl1035.46502MR1650446
  11. Cwikel M., Pustylnik E., Sobolev type embeddings in the limiting case, To appear in J. Fourier Anal. Appl. Zbl0930.46027MR1658620
  12. Edmunds D. E., Gurka P., Opic B., Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J. 44 (1995), 19–43. (1995) Zbl0826.47021MR1336431
  13. Edmunds D. E., Kerman R. A., Pick L., Optimal Sobolev embeddings involving rearrangement-invariant quasinorms, To appear. MR1740655
  14. Evans W. D., Opic B., Pick L., Interpolation of operators on scales of generalized Lorentz-Zygmund spaces, Math. Nachr. 182 (1996), 127–181. (1996) Zbl0865.46016MR1419893
  15. Fiorenza A., A summability condition on the gradient ensuring B M O , To appear in Rev. Mat. Univ. Complut. Madrid. Zbl0926.46028
  16. dman M. L. Gol,’ Heinig H. P., Stepanov V. D., On the principle of duality in Lorentz spaces, Canad. J. Math. 48 (1996), 959–979. (1996) MR1414066
  17. Hansson K., Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77–102. (1979) Zbl0437.31009MR0567435
  18. Hempel J. A., Morris G. R., Trudinger N. S., On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Australian Math. Soc. 3 (1970), 369–373. (1970) Zbl0205.12801MR0280998
  19. John F., Nirenberg L., On functions of bounded mean oscillation, , Comm. Pure Appl. Math. 14 (1961), 415–426. (1961) Zbl0102.04302MR0131498
  20. Kabaila V. P., On embeddings of the space L p ( μ ) into L r ( ν ) , (Russian). Lit. Mat. Sb. 21 (1981), 143–148. (1981) MR0641511
  21. Kerman R. A., Function spaces continuously paired by operators of convolution-type, Canad. Math. Bull. 22 (1979), 499–507. (1979) Zbl0428.46024MR0563765
  22. Kerman R. A., An integral extrapolation theorem with applications, Studia Math. 76 (1983), 183–195. (1983) Zbl0479.46015MR0729102
  23. Maz’ya V. G., Sobolev Spaces, Springer-Verlag, Berlin 1985. (1985) MR0817985
  24. Neil R. O,’, Convolution operators and L ( p , q ) spaces, Duke Math. J. 30 (1963), 129–142. (1963) MR0146673
  25. Opic B., Kufner A., Hardy-type inequalities, Pitman Research Notes in Mathematics, Longman Sci & Tech. Harlow 1990. (1990) Zbl0698.26007MR1069756
  26. Opic B., Pick L., On generalized Lorentz-Zygmund spaces, To appear. Zbl0956.46020MR1698383
  27. Peetre J., Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279–317. (1966) Zbl0151.17903MR0221282
  28. Pokhozhaev S. I., On eigenfunctions of the equation Δ u + λ f ( u ) = 0 , (Russian). Dokl. Akad. Nauk SSSR 165 (1965), 36–39. (1965) MR0192184
  29. Preprint E. Pustylnik, Optimal interpolation in spaces of Lorentz-Zygmund type, , 1998, ,. (1998) MR1749309
  30. Sawyer E. T., Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158. (1990) Zbl0705.42014MR1052631
  31. Sharpley R., Counterexamples for classical operators in Lorentz-Zygmund spaces, Studia Math. 68 (1980), 141–158. (1980) MR0599143
  32. Sobolev S. L., Applications of Functional Analysis in Mathematical Physics, Transl. of Mathem. Monographs, American Math. Soc., Providence, RI 7 (1963). (1963) Zbl0123.09003MR0165337
  33. Soria J., Lorentz spaces of weak-type, Quart. J. Math. Oxford 49 (1998), 93–103. (1998) Zbl0943.42010MR1617343
  34. Stepanov V. D., The weighted Hardy inequality for nonincreasing functions, Trans. Amer. Math. Soc. 338 (1993), 173–186. (1993) MR1097171
  35. Strichartz R. S., A note on Trudinger’s extension of Sobolev’s inequality, Indiana Univ. Math. J. 21 (1972), 841–842. (1972) MR0293389
  36. Talenti G., Inequalities in rearrangement-invariant function spaces, In: Nonlinear Analysis, Function Spaces and Applications, Vol. 5. M. Krbec, A. Kufner, B. Opic and J. Rákosník (eds.), Prometheus Publishing House, Prague 1995, 177–230. (1995) MR1322313
  37. Trudinger N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. (1967) Zbl0163.36402MR0216286
  38. Wainger S., Special trigonometric series in k -dimension, Mem. Amer. Math. Soc. 59 (1965), 1–102. (1965) MR0182838
  39. operators V. I. Yudovich, Some estimates connected with integral, 1961, with solutions of elliptic equations, Soviet Math. Doklady 2 (,) 749, 746–,. 
  40. Ziemer W. P., Weakly differentiable functions, Graduate texts in Math. 120, Springer, New York 1989. (1989) Zbl0692.46022MR1014685
  41. Zygmund A., Trigonometric Series, Cambridge University Press, Cambridge 1957. (1957) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.