Optimal Sobolev embeddings
- Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 156-199
Access Full Article
topHow to cite
topPick, Luboš. "Optimal Sobolev embeddings." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 1999. 156-199. <http://eudml.org/doc/219953>.
@inProceedings{Pick1999,
author = {Pick, Luboš},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)},
location = {Praha},
pages = {156-199},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Optimal Sobolev embeddings},
url = {http://eudml.org/doc/219953},
year = {1999},
}
TY - CLSWK
AU - Pick, Luboš
TI - Optimal Sobolev embeddings
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1999
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 156
EP - 199
KW - Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)
UR - http://eudml.org/doc/219953
ER -
References
top- Adams D.R., A sharp inequality of J. Moser for higher order derivatives, Annals of Math. 128 (1988), 385–398. (1988) Zbl0672.31008MR0960950
- Avantaggiati A., On compact imbedding theorems in weighted Sobolev spaces, Czechoslovak Math. J. 29 (104) (1979), 635–648. (1979) MR0548224
- Bennett C., Rudnick K., On Lorentz-Zygmund spaces, Dissert. Math. 175 (1980), 1–72. (1980) Zbl0456.46028MR0576995
- Bennett C., Sharpley R., Interpolation of Operators, Academic Press, Boston 1988. (1988) Zbl0647.46057MR0928802
- Boyd D. W., Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245–1254. (1969) Zbl0184.34802MR0412788
- Brézis H., Wainger S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Eq. 5 (1980), 773–789. (1980) Zbl0437.35071MR0579997
- Calderón A. P., Spaces between and and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299. (1966) MR0203444
- Carro M. J., Pick L., Soria J., Stepanov V. D., On embeddings between classical Lorentz spaces, Centre de Recerca Barcelona, preprint no. 385 (1998), 1–36. (1998) MR1841071
- Cianchi A., A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 (1996), 39–65. (1996) Zbl0860.46022MR1406683
- Cianchi A., Pick L., Sobolev embeddings into , BMO, VMO, and . Ark. Mat. 36 (1998), 317–340. (1998) Zbl1035.46502MR1650446
- Cwikel M., Pustylnik E., Sobolev type embeddings in the limiting case, To appear in J. Fourier Anal. Appl. Zbl0930.46027MR1658620
- Edmunds D. E., Gurka P., Opic B., Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J. 44 (1995), 19–43. (1995) Zbl0826.47021MR1336431
- Edmunds D. E., Kerman R. A., Pick L., Optimal Sobolev embeddings involving rearrangement-invariant quasinorms, To appear. MR1740655
- Evans W. D., Opic B., Pick L., Interpolation of operators on scales of generalized Lorentz-Zygmund spaces, Math. Nachr. 182 (1996), 127–181. (1996) Zbl0865.46016MR1419893
- Fiorenza A., A summability condition on the gradient ensuring , To appear in Rev. Mat. Univ. Complut. Madrid. Zbl0926.46028
- dman M. L. Gol,’ Heinig H. P., Stepanov V. D., On the principle of duality in Lorentz spaces, Canad. J. Math. 48 (1996), 959–979. (1996) MR1414066
- Hansson K., Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77–102. (1979) Zbl0437.31009MR0567435
- Hempel J. A., Morris G. R., Trudinger N. S., On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Australian Math. Soc. 3 (1970), 369–373. (1970) Zbl0205.12801MR0280998
- John F., Nirenberg L., On functions of bounded mean oscillation, , Comm. Pure Appl. Math. 14 (1961), 415–426. (1961) Zbl0102.04302MR0131498
- Kabaila V. P., On embeddings of the space into , (Russian). Lit. Mat. Sb. 21 (1981), 143–148. (1981) MR0641511
- Kerman R. A., Function spaces continuously paired by operators of convolution-type, Canad. Math. Bull. 22 (1979), 499–507. (1979) Zbl0428.46024MR0563765
- Kerman R. A., An integral extrapolation theorem with applications, Studia Math. 76 (1983), 183–195. (1983) Zbl0479.46015MR0729102
- Maz’ya V. G., Sobolev Spaces, Springer-Verlag, Berlin 1985. (1985) MR0817985
- Neil R. O,’, Convolution operators and spaces, Duke Math. J. 30 (1963), 129–142. (1963) MR0146673
- Opic B., Kufner A., Hardy-type inequalities, Pitman Research Notes in Mathematics, Longman Sci & Tech. Harlow 1990. (1990) Zbl0698.26007MR1069756
- Opic B., Pick L., On generalized Lorentz-Zygmund spaces, To appear. Zbl0956.46020MR1698383
- Peetre J., Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279–317. (1966) Zbl0151.17903MR0221282
- Pokhozhaev S. I., On eigenfunctions of the equation , (Russian). Dokl. Akad. Nauk SSSR 165 (1965), 36–39. (1965) MR0192184
- Preprint E. Pustylnik, Optimal interpolation in spaces of Lorentz-Zygmund type, , 1998, ,. (1998) MR1749309
- Sawyer E. T., Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145–158. (1990) Zbl0705.42014MR1052631
- Sharpley R., Counterexamples for classical operators in Lorentz-Zygmund spaces, Studia Math. 68 (1980), 141–158. (1980) MR0599143
- Sobolev S. L., Applications of Functional Analysis in Mathematical Physics, Transl. of Mathem. Monographs, American Math. Soc., Providence, RI 7 (1963). (1963) Zbl0123.09003MR0165337
- Soria J., Lorentz spaces of weak-type, Quart. J. Math. Oxford 49 (1998), 93–103. (1998) Zbl0943.42010MR1617343
- Stepanov V. D., The weighted Hardy inequality for nonincreasing functions, Trans. Amer. Math. Soc. 338 (1993), 173–186. (1993) MR1097171
- Strichartz R. S., A note on Trudinger’s extension of Sobolev’s inequality, Indiana Univ. Math. J. 21 (1972), 841–842. (1972) MR0293389
- Talenti G., Inequalities in rearrangement-invariant function spaces, In: Nonlinear Analysis, Function Spaces and Applications, Vol. 5. M. Krbec, A. Kufner, B. Opic and J. Rákosník (eds.), Prometheus Publishing House, Prague 1995, 177–230. (1995) MR1322313
- Trudinger N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. (1967) Zbl0163.36402MR0216286
- Wainger S., Special trigonometric series in -dimension, Mem. Amer. Math. Soc. 59 (1965), 1–102. (1965) MR0182838
- operators V. I. Yudovich, Some estimates connected with integral, 1961, with solutions of elliptic equations, Soviet Math. Doklady 2 (,) 749, 746–,.
- Ziemer W. P., Weakly differentiable functions, Graduate texts in Math. 120, Springer, New York 1989. (1989) Zbl0692.46022MR1014685
- Zygmund A., Trigonometric Series, Cambridge University Press, Cambridge 1957. (1957)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.