Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions*
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 3, page 761-770
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topYu, Hang. "Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions*." ESAIM: Control, Optimisation and Calculus of Variations 17.3 (2011): 761-770. <http://eudml.org/doc/221918>.
@article{Yu2011,
abstract = {
This paper studies the strong unique continuation property for the
Lamé system of elasticity with variable Lamé coefficients
λ, µ in three dimensions, $\{\rm\{div\}\}(\mu(\nabla u+\nabla
u^t))+ \nabla(\lambda\{\rm\{div\}\} u)+Vu=0$
where λ and μ are Lipschitz continuous and V∈L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.
},
author = {Yu, Hang},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Lamé system; Carleman estimate; strong unique continuation; polynomial weights},
language = {eng},
month = {8},
number = {3},
pages = {761-770},
publisher = {EDP Sciences},
title = {Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions*},
url = {http://eudml.org/doc/221918},
volume = {17},
year = {2011},
}
TY - JOUR
AU - Yu, Hang
TI - Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions*
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2011/8//
PB - EDP Sciences
VL - 17
IS - 3
SP - 761
EP - 770
AB -
This paper studies the strong unique continuation property for the
Lamé system of elasticity with variable Lamé coefficients
λ, µ in three dimensions, ${\rm{div}}(\mu(\nabla u+\nabla
u^t))+ \nabla(\lambda{\rm{div}} u)+Vu=0$
where λ and μ are Lipschitz continuous and V∈L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.
LA - eng
KW - Lamé system; Carleman estimate; strong unique continuation; polynomial weights
UR - http://eudml.org/doc/221918
ER -
References
top- G. Alessandrini and A. Morassi, Strong unique continuation for the Lamé system of elasticity. Comm. P. D. E.26 (2001) 1787–1810.
- D.D. Ang, M. Ikehata, D.D. Trong and M. Yamamoto, Unique continuation for a stationary isotropic Lamé system with varaiable coefficients. Comm. P. D. E.23 (1998) 371–385.
- B. Dehman and L. Robbiano, La propriété du prolongement unique pour un système elliptique : le système de Lamé. J. Math. Pures Appl.72 (1993) 475–492.
- M. Eller, Carleman estimates for some elliptic systems. J. Phys. Conference Series124 (2008) 012023.
- L. Escauriaza, Unique continuation for the system of elasticity in the plan. Proc. Amer. Math. Soc.134 (2005) 2015–2018.
- C.E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data. Ann. Math.165 (2007) 567–591.
- C.-L. Lin, G. Nakamura and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients. arXiv:0901.4638 (2009).
- C.-L. Lin and J.-N. Wang, Strong unique continuation for the Lamé system with Lipschitz coefficients. Math. Ann.331 (2005) 611–629.
- A. Martinez, An introduction to semiclassical and microlocal analysis. Springer-Verlag (2002).
- R. Regbaoui, Strong uniqueness for second order differential operators J. Differ. Equ.141 (1997) 201–217.
- M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators. Math. Ann.344 (2009) 161–184.
- N. Weck, Außnraumaufgaben in der Theorie stationärer Schwingungen inhomogener elasticher Körper. Math. Z.111 (1969) 387–398.
- N. Weck, Unique continuation for systems with Lamé principal part. Math. Methods Appl. Sci.24 (2001) 595–605.
- H. Yu, Three spheres inequalities and unique continuation for a three-dimensional Lamé system of elasticity with C1 coeffients. arXiv:0811.1262 (2008).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.