On the structure of (−β)-integers

Wolfgang Steiner

RAIRO - Theoretical Informatics and Applications (2012)

  • Volume: 46, Issue: 1, page 181-200
  • ISSN: 0988-3754

Abstract

top
The (−β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.

How to cite

top

Steiner, Wolfgang. "On the structure of (−β)-integers." RAIRO - Theoretical Informatics and Applications 46.1 (2012): 181-200. <http://eudml.org/doc/221960>.

@article{Steiner2012,
abstract = {The (−β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.},
author = {Steiner, Wolfgang},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Beta expansion; Parry number; beta-integer; morphism; substitution; beta expansion},
language = {eng},
month = {3},
number = {1},
pages = {181-200},
publisher = {EDP Sciences},
title = {On the structure of (−β)-integers},
url = {http://eudml.org/doc/221960},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Steiner, Wolfgang
TI - On the structure of (−β)-integers
JO - RAIRO - Theoretical Informatics and Applications
DA - 2012/3//
PB - EDP Sciences
VL - 46
IS - 1
SP - 181
EP - 200
AB - The (−β)-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. When β is the analogue of a Parry number, we describe the structure of the set of (−β)-integers by a fixed point of an anti-morphism.
LA - eng
KW - Beta expansion; Parry number; beta-integer; morphism; substitution; beta expansion
UR - http://eudml.org/doc/221960
ER -

References

top
  1. P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base. arXiv:0912.4597v3 [math.NT].  Zbl1271.11009
  2. L. Balková, J.-P. Gazeau and E. Pelantová, Asymptotic behavior of beta-integers. Lett. Math. Phys.84 (2008) 179–198.  Zbl1185.11063
  3. L. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatsh. Math.155 (2008) 251–263.  Zbl1185.68503
  4. J. Bernat, Z. Masáková and E. Pelantová, On a class of infinite words with affine factor complexity. Theoret. Comput. Sci.389 (2007) 12–25.  Zbl1143.68062
  5. V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions. Integers5 (2005) 46 (electronic only).  Zbl1139.37008
  6. Č. Burdík, C. Frougny, J.P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A31 (1998) 6449–6472.  Zbl0941.52019
  7. F. Durand, A characterization of substitutive sequences using return words. Discrete Math.179 (1998) 89–101.  Zbl0895.68087
  8. F. Enomoto, AH-substitution and Markov partition of a group automorphism on Td. Tokyo J. Math.31 (2008) 375–398.  Zbl1177.37012
  9. S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219–236.  Zbl0872.11017
  10. C. Frougny and A.C. Lai, On negative bases, Proceedings of DLT 09. Lect. Notes Comput. Sci.5583 (2009) 252–263.  Zbl1247.68139
  11. C. Frougny, Z. Masáková and E. Pelantová, Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl.38 (2004) 163–185; Corrigendum: RAIRO-Theor. Inf. Appl.38 (2004) 269–271.  Zbl1104.11013
  12. J.-P. Gazeau and J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux16 (2004) 125–149.  Zbl1075.11007
  13. P. Góra, Invariant densities for generalized β-maps. Ergod. Theory Dyn. Syst.27 (2007) 1583–1598.  Zbl1123.37015
  14. S. Ito and T. Sadahiro, Beta-expansions with negative bases. Integers9 (2009) 239–259.  Zbl1191.11005
  15. C. Kalle and W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc., to appear.  Zbl1295.11010
  16. K. Klouda and E. Pelantová, Factor complexity of infinite words associated with non-simple Parry numbers. Integers9 (2009) 281–310.  Zbl1193.68201
  17. L. Liao and W. Steiner, Dynamical properties of the negative beta-transformation. To appear in Ergod. Theory Dyn. Syst. arXiv:1101.2366v2.  Zbl1266.37017
  18. Z. Masáková and E. Pelantová, Ito-Sadahiro numbers vs. Parry numbers. Acta Polytech.51 (2011) 59–64.  
  19. W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung.11 (1960) 401–416.  Zbl0099.28103
  20. A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung.8 (1957) 477–493.  Zbl0079.08901
  21. W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lectures (1989).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.