On the structure of (−β)-integers
RAIRO - Theoretical Informatics and Applications (2012)
- Volume: 46, Issue: 1, page 181-200
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topSteiner, Wolfgang. "On the structure of (−β)-integers." RAIRO - Theoretical Informatics and Applications 46.1 (2012): 181-200. <http://eudml.org/doc/221960>.
@article{Steiner2012,
abstract = {The (−β)-integers are natural generalisations of the
β-integers, and thus of the integers, for negative real bases. When
β is the analogue of a Parry number, we describe the structure of the
set of (−β)-integers by a fixed point of an anti-morphism.},
author = {Steiner, Wolfgang},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Beta expansion; Parry number; beta-integer; morphism; substitution; beta expansion},
language = {eng},
month = {3},
number = {1},
pages = {181-200},
publisher = {EDP Sciences},
title = {On the structure of (−β)-integers},
url = {http://eudml.org/doc/221960},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Steiner, Wolfgang
TI - On the structure of (−β)-integers
JO - RAIRO - Theoretical Informatics and Applications
DA - 2012/3//
PB - EDP Sciences
VL - 46
IS - 1
SP - 181
EP - 200
AB - The (−β)-integers are natural generalisations of the
β-integers, and thus of the integers, for negative real bases. When
β is the analogue of a Parry number, we describe the structure of the
set of (−β)-integers by a fixed point of an anti-morphism.
LA - eng
KW - Beta expansion; Parry number; beta-integer; morphism; substitution; beta expansion
UR - http://eudml.org/doc/221960
ER -
References
top- P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base. arXiv:0912.4597v3 [math.NT].
- L. Balková, J.-P. Gazeau and E. Pelantová, Asymptotic behavior of beta-integers. Lett. Math. Phys.84 (2008) 179–198.
- L. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatsh. Math.155 (2008) 251–263.
- J. Bernat, Z. Masáková and E. Pelantová, On a class of infinite words with affine factor complexity. Theoret. Comput. Sci.389 (2007) 12–25.
- V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions. Integers5 (2005) 46 (electronic only).
- Č. Burdík, C. Frougny, J.P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A31 (1998) 6449–6472.
- F. Durand, A characterization of substitutive sequences using return words. Discrete Math.179 (1998) 89–101.
- F. Enomoto, AH-substitution and Markov partition of a group automorphism on Td. Tokyo J. Math.31 (2008) 375–398.
- S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219–236.
- C. Frougny and A.C. Lai, On negative bases, Proceedings of DLT 09. Lect. Notes Comput. Sci.5583 (2009) 252–263.
- C. Frougny, Z. Masáková and E. Pelantová, Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl.38 (2004) 163–185; Corrigendum: RAIRO-Theor. Inf. Appl.38 (2004) 269–271.
- J.-P. Gazeau and J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux16 (2004) 125–149.
- P. Góra, Invariant densities for generalized β-maps. Ergod. Theory Dyn. Syst.27 (2007) 1583–1598.
- S. Ito and T. Sadahiro, Beta-expansions with negative bases. Integers9 (2009) 239–259.
- C. Kalle and W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc., to appear.
- K. Klouda and E. Pelantová, Factor complexity of infinite words associated with non-simple Parry numbers. Integers9 (2009) 281–310.
- L. Liao and W. Steiner, Dynamical properties of the negative beta-transformation. To appear in Ergod. Theory Dyn. Syst. arXiv:1101.2366v2.
- Z. Masáková and E. Pelantová, Ito-Sadahiro numbers vs. Parry numbers. Acta Polytech.51 (2011) 59–64.
- W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung.11 (1960) 401–416.
- A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung.8 (1957) 477–493.
- W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lectures (1989).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.