# On the structure of (−β)-integers

RAIRO - Theoretical Informatics and Applications (2012)

- Volume: 46, Issue: 1, page 181-200
- ISSN: 0988-3754

## Access Full Article

top## Abstract

top## How to cite

topSteiner, Wolfgang. "On the structure of (−β)-integers." RAIRO - Theoretical Informatics and Applications 46.1 (2012): 181-200. <http://eudml.org/doc/221960>.

@article{Steiner2012,

abstract = {The (−β)-integers are natural generalisations of the
β-integers, and thus of the integers, for negative real bases. When
β is the analogue of a Parry number, we describe the structure of the
set of (−β)-integers by a fixed point of an anti-morphism.},

author = {Steiner, Wolfgang},

journal = {RAIRO - Theoretical Informatics and Applications},

keywords = {Beta expansion; Parry number; beta-integer; morphism; substitution; beta expansion},

language = {eng},

month = {3},

number = {1},

pages = {181-200},

publisher = {EDP Sciences},

title = {On the structure of (−β)-integers},

url = {http://eudml.org/doc/221960},

volume = {46},

year = {2012},

}

TY - JOUR

AU - Steiner, Wolfgang

TI - On the structure of (−β)-integers

JO - RAIRO - Theoretical Informatics and Applications

DA - 2012/3//

PB - EDP Sciences

VL - 46

IS - 1

SP - 181

EP - 200

AB - The (−β)-integers are natural generalisations of the
β-integers, and thus of the integers, for negative real bases. When
β is the analogue of a Parry number, we describe the structure of the
set of (−β)-integers by a fixed point of an anti-morphism.

LA - eng

KW - Beta expansion; Parry number; beta-integer; morphism; substitution; beta expansion

UR - http://eudml.org/doc/221960

ER -

## References

top- P. Ambrož, D. Dombek, Z. Masáková and E. Pelantová, Numbers with integer expansion in the numeration system with negative base. arXiv:0912.4597v3 [math.NT]. Zbl1271.11009
- L. Balková, J.-P. Gazeau and E. Pelantová, Asymptotic behavior of beta-integers. Lett. Math. Phys.84 (2008) 179–198. Zbl1185.11063
- L. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatsh. Math.155 (2008) 251–263. Zbl1185.68503
- J. Bernat, Z. Masáková and E. Pelantová, On a class of infinite words with affine factor complexity. Theoret. Comput. Sci.389 (2007) 12–25. Zbl1143.68062
- V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions. Integers5 (2005) 46 (electronic only). Zbl1139.37008
- Č. Burdík, C. Frougny, J.P. Gazeau and R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A31 (1998) 6449–6472. Zbl0941.52019
- F. Durand, A characterization of substitutive sequences using return words. Discrete Math.179 (1998) 89–101. Zbl0895.68087
- F. Enomoto, AH-substitution and Markov partition of a group automorphism on Td. Tokyo J. Math.31 (2008) 375–398. Zbl1177.37012
- S. Fabre, Substitutions et β-systèmes de numération. Theoret. Comput. Sci.137 (1995) 219–236. Zbl0872.11017
- C. Frougny and A.C. Lai, On negative bases, Proceedings of DLT 09. Lect. Notes Comput. Sci.5583 (2009) 252–263. Zbl1247.68139
- C. Frougny, Z. Masáková and E. Pelantová, Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl.38 (2004) 163–185; Corrigendum: RAIRO-Theor. Inf. Appl.38 (2004) 269–271. Zbl1104.11013
- J.-P. Gazeau and J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux16 (2004) 125–149. Zbl1075.11007
- P. Góra, Invariant densities for generalized β-maps. Ergod. Theory Dyn. Syst.27 (2007) 1583–1598. Zbl1123.37015
- S. Ito and T. Sadahiro, Beta-expansions with negative bases. Integers9 (2009) 239–259. Zbl1191.11005
- C. Kalle and W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Am. Math. Soc., to appear. Zbl1295.11010
- K. Klouda and E. Pelantová, Factor complexity of infinite words associated with non-simple Parry numbers. Integers9 (2009) 281–310. Zbl1193.68201
- L. Liao and W. Steiner, Dynamical properties of the negative beta-transformation. To appear in Ergod. Theory Dyn. Syst. arXiv:1101.2366v2. Zbl1266.37017
- Z. Masáková and E. Pelantová, Ito-Sadahiro numbers vs. Parry numbers. Acta Polytech.51 (2011) 59–64.
- W. Parry, On the β-expansions of real numbers. Acta Math. Acad. Sci. Hung.11 (1960) 401–416. Zbl0099.28103
- A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung.8 (1957) 477–493. Zbl0079.08901
- W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lectures (1989).

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.