Phase field method for mean curvature flow with boundary constraints
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 6, page 1509-1526
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBretin, Elie, and Perrier, Valerie. "Phase field method for mean curvature flow with boundary constraints." ESAIM: Mathematical Modelling and Numerical Analysis 46.6 (2012): 1509-1526. <http://eudml.org/doc/276375>.
@article{Bretin2012,
abstract = {This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.},
author = {Bretin, Elie, Perrier, Valerie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Allen Cahn equation; mean curvature flow; boundary constraints; penalization technique; gamma-convergence; Fourier splitting method; numerical tests; convergence},
language = {eng},
month = {6},
number = {6},
pages = {1509-1526},
publisher = {EDP Sciences},
title = {Phase field method for mean curvature flow with boundary constraints},
url = {http://eudml.org/doc/276375},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Bretin, Elie
AU - Perrier, Valerie
TI - Phase field method for mean curvature flow with boundary constraints
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/6//
PB - EDP Sciences
VL - 46
IS - 6
SP - 1509
EP - 1526
AB - This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result and then show some numerical comparisons of these two different models.
LA - eng
KW - Allen Cahn equation; mean curvature flow; boundary constraints; penalization technique; gamma-convergence; Fourier splitting method; numerical tests; convergence
UR - http://eudml.org/doc/276375
ER -
References
top- G. Alberti, Variational models for phase transitions, an approach viaγ-convergence, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 95–114.
- S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall.27 (1979) 1085–1095.
- L. Almeida, A. Chambolle and M. Novaga, Mean curvature flow with obstacle. Technical Report Preprint (2011).
- L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in Calculus of variations and partial differential equations (Pisa, 1996). Springer, Berlin (2000) 5–93.
- G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, in Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Paris 17 (1994).
- J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in r3. J. Comput. Phys.227 (2008) 4281–4307.
- J.W. Barrett, H. Garcke and R. Nürnberg, A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math.109 (2008) 1–44.
- P.W. Bates, S. Brown and J.L. Han, Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model.6 (2009) 33–49.
- G. Bellettini, Variational approximation of functionals with curvatures and related properties. J. Convex Anal.4 (1997) 91–108.
- G. Bellettini and M. Paolini, Quasi-optimal error estimates for the mean curvature flow with a forcing term. Differ. Integral Equ.8 (1995) 735–752.
- G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J.25 (1996) 537–566.
- B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM : COCV9 (2003) 19–48.
- M. Brassel, Instabilité de Forme en Croissance Cristalline. Ph.D. thesis, University Joseph Fourier, Grenoble (2008).
- M. Brassel and E. Bretin, A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci.34 (2011) 1157–1180.
- E. Bretin, Méthode de champ de phase et mouvement par courbure moyenne. Ph.D. thesis, Institut National Polytechnique de Grenoble (2009).
- A. Bueno-Orovio, V.M. Pérez-García and F.H. Fenton, Spectral methods for partial differential equations in irregular domains : The spectral smoothed boundary method. SIAM J. Sci. Comput.28 (2006) 886–900.
- X. Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ.96 (1992) 116–141.
- L.Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun.108 (1998) 147–158.
- Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. Proc. Jpn Acad. Ser. A65 (1989) 207–210.
- X.F. Chen, C.M. Elliott, A. Gardiner and J.J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation. Appl. Anal.69 (1998) 47–56.
- M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull Amer. Math. Soc.27 (1992) 1–68.
- K. Deckelnick and G. Dziuk, Discrete anisotropic curvature flow of graphs. ESAIM : M2AN33 (1999) 1203–1222.
- K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer.14 (2005) 139–232.
- L.C. Evans and J. Spruck, Motion of level sets by mean curvature I. J. Differ. Geom.33 (1991) 635–681.
- L.C. Evans, H.M. Soner and P.E. Souganidis, Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math.45 (1992) 1097–1123.
- X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math.94 (2003) 33–65.
- X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput.73 (2004) 541–567.
- X. Feng and H.-J. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow. J. Sci. Comput.24 (2005) 121–146.
- Y. Li, H.G. Lee, D. Jeong and J. Kim, An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation. Comput. Math. Appl.60 (2010) 1591–1606.
- L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A14 (1977) 526–529.
- L. Modica and S. Mortola, Un esempio di Γ − -convergenza. Boll. Un. Mat. Ital. B14 (1977) 285–299.
- S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York. Appl. Math. Sci. (2002).
- S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, New York (2003).
- S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed : algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.79 (1988) 12–49.
- N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a dirichlet condition. Proc. R. Soc. London429 (1990) 505–532.
- M. Paolini, An efficient algorithm for computing anisotropic evolution by mean curvature, in Curvature flows and related topics, edited by Levico, 1994. Gakuto Int. Ser. Math. Sci. Appl.5 (1995) 199–213.
- M. Röger and R. Schätzle, On a modified conjecture of De Giorgi. Math. Z.254 (2006) 675–714.
- R. Schätzle, Lower semicontinuity of the Willmore functional for currents. J. Differ. Geom.81 (2009) 437–456.
- R. Schätzle, The Willmore boundary problem. Calc. Var. Partial Differ. Equ.37 (2010) 275–302.
- S. Serfaty, Gamma-convergence of gradient flows on hilbert and metric spaces and applications. Disc. Cont. Dyn. Systems31 (2011) 1427–1451.
- H.-C.Y. Yu, H.-Y. Chen and K. Thornton, Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries. Technical Report, arXiv:1107.5341v1 (2011). Submitted.
- J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit. SIAM J. Sci. Comput.31 (2009) 3042–3063.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.