Mortar spectral method in axisymmetric domains

Saloua Mani Aouadi; Jamil Satouri

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

  • Volume: 47, Issue: 1, page 33-55
  • ISSN: 0764-583X

Abstract

top
We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.

How to cite

top

Mani Aouadi, Saloua, and Satouri, Jamil. "Mortar spectral method in axisymmetric domains." ESAIM: Mathematical Modelling and Numerical Analysis 47.1 (2012): 33-55. <http://eudml.org/doc/222134>.

@article{ManiAouadi2012,
abstract = {We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.},
author = {Mani Aouadi, Saloua, Satouri, Jamil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Axisymmetric domains; mortar method; spectral methods; Laplace equation; axisymmetric domains; Fourier expansion; a priori error estimates; numerical experiments; convergence},
language = {eng},
month = {7},
number = {1},
pages = {33-55},
publisher = {EDP Sciences},
title = {Mortar spectral method in axisymmetric domains},
url = {http://eudml.org/doc/222134},
volume = {47},
year = {2012},
}

TY - JOUR
AU - Mani Aouadi, Saloua
AU - Satouri, Jamil
TI - Mortar spectral method in axisymmetric domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/7//
PB - EDP Sciences
VL - 47
IS - 1
SP - 33
EP - 55
AB - We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We reduce the original problem by a Fourier expansion in the angular variable to a countable family of two-dimensional problems. We decompose the meridian domain, assumed polygonal, in a finite number of rectangles and we discretize by a spectral method. Then we describe the main features of the mortar method and use the algorithm Strang Fix to improve the accuracy of our discretization.
LA - eng
KW - Axisymmetric domains; mortar method; spectral methods; Laplace equation; axisymmetric domains; Fourier expansion; a priori error estimates; numerical experiments; convergence
UR - http://eudml.org/doc/222134
ER -

References

top
  1. A.B. Abdallah, F.B. Belgacem, Y. Maday and F. Rapetti, Mortaring the two-dimensional edge finite elements for the discretization of some electromagnetic models. Math. Mod. Methods Appl. Sci.14 (2004) 1635–1656.  
  2. M. Azaïez, C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymetric Domains. Series in Appl. Math.3 (1999).  
  3. F.B. Belgacem, C. Bernardi and F. Rapetti, Numerical analysis of a model for an axisymmetric guide for electromagnetic waves. Part I : The continuous problem and its Fourier expansion. Math. Meth. Appl. Sci.28 (2005) 2007–2029.  
  4. C. Bernardi and Y. Maday, Properties of some weighted Sobolev spaces and application to spectral approximations. SIAM J. Numer. Anal.26 (1989) 769–829.  
  5. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Math. Appl.10 (1992).  
  6. C. Bernardi, M. Dauge and M. Azaïez, Numerical Analysis and Spectral Methods in Axisymetric Problems. Rapport Interne, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie (1995).  
  7. S. Bertoluzza, S. Falletta and V. Perrier, The Mortar method in the wavelet context. Model. Math. Anal. Numer. 35 (2001) 647–673.  
  8. H. Brezis, Analyse fonctionnelle, in Théorie et Applications. Masson, Paris (1983).  
  9. N. Chorfi, Traitement de singularités géométriques par méthode d’éléments spectraux avec joints. Thèse de l’Université Pierre et Marie Curie, Paris VI (1998).  
  10. M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math.1341 (1988).  
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Algorithms. Springer-Verlag (1986).  
  12. P. Grisvard, Singularities in boundary value problems, in Collect. RMA22 (1992).  
  13. P. Le Tallec, Domain decomposition methods in computational mechanics, in Comput. Mech. Adv. North-Holland (1994).  
  14. R. Pasquetti, L.F. Pavarino, F. Rapetti and E. Zampieri, Overlapping Schwarz methods for Fekete and Gauss–Lobatto spectral elements. SIAM J. Scient. Comput.29 (2007) 1073–1092.  
  15. Y. Maday, C. Mavriplis and A.T. Patera, Nonconforming mortar element methods : application to spectral discretizations, in Domain decomposition methods. SIAM (1989) 392–418.  
  16. J. Satouri, Méthodes d’éléments spectraux avec joints pour des géométries axisymétriques. Thèse de l’Université Pierre et Marie Curie, Paris VI (2010).  
  17. G. Strang and G.J. Fix, An Analysis of the Finite Element Method, in Automatic Computation. Prentice Hall Serie (1973).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.