# Mortar spectral method in axisymmetric domains

Saloua Mani Aouadi; Jamil Satouri

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

- Volume: 47, Issue: 1, page 33-55
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topMani Aouadi, Saloua, and Satouri, Jamil. "Mortar spectral method in axisymmetric domains." ESAIM: Mathematical Modelling and Numerical Analysis 47.1 (2012): 33-55. <http://eudml.org/doc/222134>.

@article{ManiAouadi2012,

abstract = {We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We
reduce the original problem by a Fourier expansion in the angular variable to a countable
family of two-dimensional problems. We decompose the meridian domain, assumed polygonal,
in a finite number of rectangles and we discretize by a spectral method. Then we describe
the main features of the mortar method and use the algorithm Strang Fix to improve the
accuracy of our discretization.},

author = {Mani Aouadi, Saloua, Satouri, Jamil},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Axisymmetric domains; mortar method; spectral methods; Laplace equation; axisymmetric domains; Fourier expansion; a priori error estimates; numerical experiments; convergence},

language = {eng},

month = {7},

number = {1},

pages = {33-55},

publisher = {EDP Sciences},

title = {Mortar spectral method in axisymmetric domains},

url = {http://eudml.org/doc/222134},

volume = {47},

year = {2012},

}

TY - JOUR

AU - Mani Aouadi, Saloua

AU - Satouri, Jamil

TI - Mortar spectral method in axisymmetric domains

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2012/7//

PB - EDP Sciences

VL - 47

IS - 1

SP - 33

EP - 55

AB - We consider the Laplace equation posed in a three-dimensional axisymmetric domain. We
reduce the original problem by a Fourier expansion in the angular variable to a countable
family of two-dimensional problems. We decompose the meridian domain, assumed polygonal,
in a finite number of rectangles and we discretize by a spectral method. Then we describe
the main features of the mortar method and use the algorithm Strang Fix to improve the
accuracy of our discretization.

LA - eng

KW - Axisymmetric domains; mortar method; spectral methods; Laplace equation; axisymmetric domains; Fourier expansion; a priori error estimates; numerical experiments; convergence

UR - http://eudml.org/doc/222134

ER -

## References

top- A.B. Abdallah, F.B. Belgacem, Y. Maday and F. Rapetti, Mortaring the two-dimensional edge finite elements for the discretization of some electromagnetic models. Math. Mod. Methods Appl. Sci.14 (2004) 1635–1656.
- M. Azaïez, C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymetric Domains. Series in Appl. Math.3 (1999).
- F.B. Belgacem, C. Bernardi and F. Rapetti, Numerical analysis of a model for an axisymmetric guide for electromagnetic waves. Part I : The continuous problem and its Fourier expansion. Math. Meth. Appl. Sci.28 (2005) 2007–2029.
- C. Bernardi and Y. Maday, Properties of some weighted Sobolev spaces and application to spectral approximations. SIAM J. Numer. Anal.26 (1989) 769–829.
- C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Math. Appl.10 (1992).
- C. Bernardi, M. Dauge and M. Azaïez, Numerical Analysis and Spectral Methods in Axisymetric Problems. Rapport Interne, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie (1995).
- S. Bertoluzza, S. Falletta and V. Perrier, The Mortar method in the wavelet context. Model. Math. Anal. Numer. 35 (2001) 647–673.
- H. Brezis, Analyse fonctionnelle, in Théorie et Applications. Masson, Paris (1983).
- N. Chorfi, Traitement de singularités géométriques par méthode d’éléments spectraux avec joints. Thèse de l’Université Pierre et Marie Curie, Paris VI (1998).
- M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math.1341 (1988).
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, in Theory and Algorithms. Springer-Verlag (1986).
- P. Grisvard, Singularities in boundary value problems, in Collect. RMA22 (1992).
- P. Le Tallec, Domain decomposition methods in computational mechanics, in Comput. Mech. Adv. North-Holland (1994).
- R. Pasquetti, L.F. Pavarino, F. Rapetti and E. Zampieri, Overlapping Schwarz methods for Fekete and Gauss–Lobatto spectral elements. SIAM J. Scient. Comput.29 (2007) 1073–1092.
- Y. Maday, C. Mavriplis and A.T. Patera, Nonconforming mortar element methods : application to spectral discretizations, in Domain decomposition methods. SIAM (1989) 392–418.
- J. Satouri, Méthodes d’éléments spectraux avec joints pour des géométries axisymétriques. Thèse de l’Université Pierre et Marie Curie, Paris VI (2010).
- G. Strang and G.J. Fix, An Analysis of the Finite Element Method, in Automatic Computation. Prentice Hall Serie (1973).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.