Effect of the polarization drift in a strongly magnetized plasma
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 4, page 929-947
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal.XXIII (1992) 1482–1518.
- A.A. Arsenev, Existence in the large of a weak solution of Vlasov’s system of equations. Z. Vychisl. Mat. Mat. Fiz.15 (1975) 136–147.
- M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime. Asymptot. Anal.61 (2009) 91–123.
- P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equations in 1 and 2 space dimensions. Ann. Sci. École Norm. Sup.19 (1986) 519–542.
- E. Frénod and A. Mouton, Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates. J. Pure Appl. Math. : Adv. Appl.4 (2010) 135–166.
- E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation. SIAM J. Math. Anal.32 (2001) 1227–1247.
- E. Frénod, A. Mouton and E. Sonnendrücker, Two-scale numerical simulation of the weakly compressible 1D isentropic Euler equations. Numer. Math.108 (2007) 263–293.
- E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method. Math. Models Methods Appl. Sci.19 (2009) 175–197.
- P. Ghendrih, M. Hauray and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions. KRM2 (2009) 707–725.
- F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl.78 (1999) 791–817.
- V. Grandgirardet al., Global full-f gyrokinetic simulations of plasma turbulence. Plasma Phys. Control. Fusion49 (2007) 173–182.
- D. Han-Kwan, The three-dimensional finite Larmor radius approximation. Asymptot. Anal.66 (2010) 9–33.
- D. Han-Kwan, On the three-dimensional finite Larmor radius approximation : the case of electrons in a fixed background of ions. Submitted (2010).
- Z. Lin, S. Ethier, T.S. Hahm and W.M. Tang, Size scaling of turbulent transport in magnetically confined plasmas. Phys. Rev. Lett.88 (2002) 195004-1–195004-4.
- P.L. Lions and B. Perthame, Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system. Invent. Math.105 (1991) 415–430.
- A. Mouton, Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. KRM2 (2009) 251–274.
- G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal.20 (1989) 608–623.
- S. Ukai and T. Okabe, On classical solutions in the large in time of two-dimensional Vlasov’s equation. Osaka J. Math.15 (1978) 245–261.
- J. Wesson, Tokamaks.Clarendon Press-Oxford (2004).