Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in and space dimensions
Annales scientifiques de l'École Normale Supérieure (1986)
- Volume: 19, Issue: 4, page 519-542
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDegond, Pierre. "Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions." Annales scientifiques de l'École Normale Supérieure 19.4 (1986): 519-542. <http://eudml.org/doc/82185>.
@article{Degond1986,
author = {Degond, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {existence; global in time smooth solutions; Vlasov-Fokker-Planck equations; decay of the solution; convergence; Vlasov-Poisson equation},
language = {eng},
number = {4},
pages = {519-542},
publisher = {Elsevier},
title = {Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions},
url = {http://eudml.org/doc/82185},
volume = {19},
year = {1986},
}
TY - JOUR
AU - Degond, Pierre
TI - Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 4
SP - 519
EP - 542
LA - eng
KW - existence; global in time smooth solutions; Vlasov-Fokker-Planck equations; decay of the solution; convergence; Vlasov-Poisson equation
UR - http://eudml.org/doc/82185
ER -
References
top- [1] A. A. ARSENEV, Global existence of a weak solution of Vlasov's system of equations (USSR comput. Math. and Math. Phys., Vol. 15, 1975, pp. 131-143).
- [2] M. S. BAQUENDI and P. GRISVARD, Sur une équation d'évolution changeant de type (J. of functional analysis, 1968, pp. 352-367). Zbl0164.12701MR40 #6034
- [3] C. BARDOS and P. DEGOND, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data to appear in Ann. Inst. Henri-Poincaré ; Analyse non linéaire, Vol. 2, No. 2, 1985, pp. 101-118. Zbl0593.35076MR86k:35129
- [4] J. T. BEALE, T. KATO and A. MAJDA, Remarks on the breakdown of smooth solutions for the 3.D Euler equations, Preprint, university of Berkeley. Zbl0573.76029
- [5] P. DEGOND, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Internal Report No. 117, Centre de Mathématiques appliquées, Ecole Polytechnique, Paris. Zbl0619.35088
- [6] P. DEGOND and S. GALLIC, Existence of solutions and diffusion approximation for a model Fokker-Planck equation of a monoenergetic plasma, Manuscript to appear in internal reports, Ecole Polytechnique.
- [7] E. HORST, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation (Math. meth. in the appl. Sci, Vol. 3, 1981, pp. 229-248). Zbl0463.35071MR83h:35110
- [8] R. ILLNER and H. NEUNZERT, An existence theorem for the unmodified Vlasov equation (Math. meth. in the appl. Sci., Vol. 1, 1979, pp. 530-554). Zbl0415.35076MR80j:35085
- [9] S. V. IORDANSKII, The Cauchy problem for the kinetic equation of Plasma (Amer. Math. Soc. Trans., Vol. 2-35, 1964, pp. 351-363). Zbl0127.21902
- [10] J. L. LIONS, Equations différentielles opérationnelles et problèmes aux limites, Springer, Berlin, 1961. Zbl0098.31101
- [11] H. NEUNZERT, M. PULVIRENTI and L. TRIOLO, On the Vlasov-Fokker-Planck equation, preprint n° 77, Fachbereich Mathematik, Universitöt Kaiserlautern, January 1984. Zbl0561.35070MR86d:82026
- [12] L. TARTAR, Topics is nonlinear analysis, Publications mathématiques de l'Université de Paris-Sud (Orsay), novembre 1978. Zbl0395.00008
- [13] S. UKAI and T. OKABE, On the classical solution in the large in time of the two dimensional Vlasov equation (Osaka J. of math., Vol. 15, 1978, pp. 245-261). Zbl0405.35002MR81i:35007
- [14] S. WOLLMAN, Existence and uniqueness theory of the Vlasov equation, Internal report, Courant Institute, New York, October 1982.
Citations in EuDML Documents
top- Mihai Bostan, Thierry Goudon, High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system
- Daniel Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma
- Frédéric Bernardin, Mireille Bossy, Claire Chauvin, Jean-François Jabir, Antoine Rousseau, Stochastic Lagrangian method for downscaling problems in computational fluid dynamics
- Daniel Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma
- Mihai Bostan, Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
- Mihai Bostan, Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
- Franck Sueur, Sur la dynamique de corps solides immergés dans un fluide incompressible
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.