Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions

Pierre Degond

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 4, page 519-542
  • ISSN: 0012-9593

How to cite

top

Degond, Pierre. "Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions." Annales scientifiques de l'École Normale Supérieure 19.4 (1986): 519-542. <http://eudml.org/doc/82185>.

@article{Degond1986,
author = {Degond, Pierre},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {existence; global in time smooth solutions; Vlasov-Fokker-Planck equations; decay of the solution; convergence; Vlasov-Poisson equation},
language = {eng},
number = {4},
pages = {519-542},
publisher = {Elsevier},
title = {Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions},
url = {http://eudml.org/doc/82185},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Degond, Pierre
TI - Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 4
SP - 519
EP - 542
LA - eng
KW - existence; global in time smooth solutions; Vlasov-Fokker-Planck equations; decay of the solution; convergence; Vlasov-Poisson equation
UR - http://eudml.org/doc/82185
ER -

References

top
  1. [1] A. A. ARSENEV, Global existence of a weak solution of Vlasov's system of equations (USSR comput. Math. and Math. Phys., Vol. 15, 1975, pp. 131-143). 
  2. [2] M. S. BAQUENDI and P. GRISVARD, Sur une équation d'évolution changeant de type (J. of functional analysis, 1968, pp. 352-367). Zbl0164.12701MR40 #6034
  3. [3] C. BARDOS and P. DEGOND, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data to appear in Ann. Inst. Henri-Poincaré ; Analyse non linéaire, Vol. 2, No. 2, 1985, pp. 101-118. Zbl0593.35076MR86k:35129
  4. [4] J. T. BEALE, T. KATO and A. MAJDA, Remarks on the breakdown of smooth solutions for the 3.D Euler equations, Preprint, university of Berkeley. Zbl0573.76029
  5. [5] P. DEGOND, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Internal Report No. 117, Centre de Mathématiques appliquées, Ecole Polytechnique, Paris. Zbl0619.35088
  6. [6] P. DEGOND and S. GALLIC, Existence of solutions and diffusion approximation for a model Fokker-Planck equation of a monoenergetic plasma, Manuscript to appear in internal reports, Ecole Polytechnique. 
  7. [7] E. HORST, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation (Math. meth. in the appl. Sci, Vol. 3, 1981, pp. 229-248). Zbl0463.35071MR83h:35110
  8. [8] R. ILLNER and H. NEUNZERT, An existence theorem for the unmodified Vlasov equation (Math. meth. in the appl. Sci., Vol. 1, 1979, pp. 530-554). Zbl0415.35076MR80j:35085
  9. [9] S. V. IORDANSKII, The Cauchy problem for the kinetic equation of Plasma (Amer. Math. Soc. Trans., Vol. 2-35, 1964, pp. 351-363). Zbl0127.21902
  10. [10] J. L. LIONS, Equations différentielles opérationnelles et problèmes aux limites, Springer, Berlin, 1961. Zbl0098.31101
  11. [11] H. NEUNZERT, M. PULVIRENTI and L. TRIOLO, On the Vlasov-Fokker-Planck equation, preprint n° 77, Fachbereich Mathematik, Universitöt Kaiserlautern, January 1984. Zbl0561.35070MR86d:82026
  12. [12] L. TARTAR, Topics is nonlinear analysis, Publications mathématiques de l'Université de Paris-Sud (Orsay), novembre 1978. Zbl0395.00008
  13. [13] S. UKAI and T. OKABE, On the classical solution in the large in time of the two dimensional Vlasov equation (Osaka J. of math., Vol. 15, 1978, pp. 245-261). Zbl0405.35002MR81i:35007
  14. [14] S. WOLLMAN, Existence and uniqueness theory of the Vlasov equation, Internal report, Courant Institute, New York, October 1982. 

Citations in EuDML Documents

top
  1. Mihai Bostan, Thierry Goudon, High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system
  2. Daniel Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma
  3. Daniel Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma
  4. Frédéric Bernardin, Mireille Bossy, Claire Chauvin, Jean-François Jabir, Antoine Rousseau, Stochastic Lagrangian method for downscaling problems in computational fluid dynamics
  5. Mihai Bostan, Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
  6. Mihai Bostan, Numerical study by a controllability method for the calculation of the time-periodic solutions of the Maxwell and Vlasov-Maxwell systems
  7. Franck Sueur, Sur la dynamique de corps solides immergés dans un fluide incompressible

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.