# Blood Flow Simulation in Atherosclerotic Vascular Network Using Fiber-Spring Representation of Diseased Wall

Yu. Vassilevski; S. Simakov; V. Salamatova; Yu. Ivanov; T. Dobroserdova

Mathematical Modelling of Natural Phenomena (2011)

- Volume: 6, Issue: 5, page 333-349
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topVassilevski, Yu., et al. "Blood Flow Simulation in Atherosclerotic Vascular Network Using Fiber-Spring Representation of Diseased Wall." Mathematical Modelling of Natural Phenomena 6.5 (2011): 333-349. <http://eudml.org/doc/222219>.

@article{Vassilevski2011,

abstract = {We present the fiber-spring elastic model of the arterial wall with atherosclerotic
plaque composed of a lipid pool and a fibrous cap. This model allows us to reproduce
pressure to cross-sectional area relationship along the diseased vessel which is used in
the network model of global blood circulation. Atherosclerosis attacks a region of
systemic arterial network. Our approach allows us to examine the impact of the diseased
region onto global haemodynamics.},

author = {Vassilevski, Yu., Simakov, S., Salamatova, V., Ivanov, Yu., Dobroserdova, T.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {atherosclerosis; mathematical modeling; blood flow; arterial wall},

language = {eng},

month = {8},

number = {5},

pages = {333-349},

publisher = {EDP Sciences},

title = {Blood Flow Simulation in Atherosclerotic Vascular Network Using Fiber-Spring Representation of Diseased Wall},

url = {http://eudml.org/doc/222219},

volume = {6},

year = {2011},

}

TY - JOUR

AU - Vassilevski, Yu.

AU - Simakov, S.

AU - Salamatova, V.

AU - Ivanov, Yu.

AU - Dobroserdova, T.

TI - Blood Flow Simulation in Atherosclerotic Vascular Network Using Fiber-Spring Representation of Diseased Wall

JO - Mathematical Modelling of Natural Phenomena

DA - 2011/8//

PB - EDP Sciences

VL - 6

IS - 5

SP - 333

EP - 349

AB - We present the fiber-spring elastic model of the arterial wall with atherosclerotic
plaque composed of a lipid pool and a fibrous cap. This model allows us to reproduce
pressure to cross-sectional area relationship along the diseased vessel which is used in
the network model of global blood circulation. Atherosclerosis attacks a region of
systemic arterial network. Our approach allows us to examine the impact of the diseased
region onto global haemodynamics.

LA - eng

KW - atherosclerosis; mathematical modeling; blood flow; arterial wall

UR - http://eudml.org/doc/222219

ER -

## References

top- G. C. Cheng, H. M. Loree, R. D. Kamm, M. C. Fishbein, R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circ. Res., 4 (1993), No. 87, 1179–1187.
- L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics. Heidelberg, DE: Springer, 2009.
- T. C. Gasser, G. A. Holzapfel. A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comp. Mech., 29 (2002), No. 4–5, 340–360.
- G. A. Holzapfel, T. C. Gasser, R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity, 61 (2000), No. 1, 1–48.
- G. A. Holzapfel, M. Stadler, C. A. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng., 30 (2002), No. 6, 753–767.
- N. El Khatib, S. Génieys, V. Volpert. Atherosclerosis initiation modeled as an inflammatory process. Math. Model. Nat. Phen., 2 (2007), No. 2, 126–141.
- N. El Khatib, S. Génieys, A. M. Zine, V. Volpert. Non-Newtonian effects in a fluid-structure interaction model for atherosclerosis. J. Tech. Phys., 1 (2009), No. 50, 55–64.
- H. M. Loree, R. D. Kamm, R. G. Stringfellow, R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res., 4 (1992), No. 71, 850–858.
- Y. Mori, C. S. Peskin. A universal programmable fiber architecture for the representation of a general incompressible linearly elastic material as a fiber-reinforced fluid. Adv. Appl. Math., 43 (2009), No. 1, 75–100.
- T. J. Pedley, X. Y. Luo. Modelling flow and oscillations in collapsible tubes. Theor. Comp. Dluid Dyn., 10 (1998), No. 1–4, 277–294.
- M. Rosar, C. Peskin. Fluid flow in collapsible elastic tubes: a three-dimensional numerical model. New York J. Math., 7 (2001), 281–302.
- S. S. Simakov, A. S. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances. Mat. Mod. Comp. Sim., 1 (2009), No. 283–295.
- C. A. Taylor, M. T. Draney. Experimental and computational methods in cardiovascular fluid mechanics. Ann. Rev. Fluid Mech., (2004), No. 36, 197–231.
- C. Tu, C. Peskin. Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Scientific and Statistical Computing, 6 (1992), No. 13, 1361–1376.
- F. N. Van de Vosse. Mathematical modelling of the cardiovascular system. J. Eng. Math., (2003), No. 47, 175–183.
- Y. V. Vassilevski, S. S. Simakov, S. A. Kapranov. A multi-model approach to intravenous filter optimization. Int. J. Num. Meth. Biomed. Eng., 26 (2010), No. 7, 915–925.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.