# Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks

Yu. Vassilevski; S. Simakov; V. Salamatova; Yu. Ivanov; T. Dobroserdova

Mathematical Modelling of Natural Phenomena (2011)

- Volume: 6, Issue: 7, page 82-99
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topVassilevski, Yu., et al. "Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks." Mathematical Modelling of Natural Phenomena 6.7 (2011): 82-99. <http://eudml.org/doc/222340>.

@article{Vassilevski2011,

abstract = {There are two mathematical models of elastic walls of healthy and atherosclerotic blood
vessels developed and studied. The models are included in a numerical model of global
blood circulation via recovery of the vessel wall state equation. The joint model allows
us to study the impact of arteries atherosclerotic disease of a set of arteries on
regional haemodynamics.},

author = {Vassilevski, Yu., Simakov, S., Salamatova, V., Ivanov, Yu., Dobroserdova, T.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {atherosclerosis; mathematical modelling; blood flow; arterial wall; wall state equation; mathematical modeling},

language = {eng},

month = {6},

number = {7},

pages = {82-99},

publisher = {EDP Sciences},

title = {Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks},

url = {http://eudml.org/doc/222340},

volume = {6},

year = {2011},

}

TY - JOUR

AU - Vassilevski, Yu.

AU - Simakov, S.

AU - Salamatova, V.

AU - Ivanov, Yu.

AU - Dobroserdova, T.

TI - Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks

JO - Mathematical Modelling of Natural Phenomena

DA - 2011/6//

PB - EDP Sciences

VL - 6

IS - 7

SP - 82

EP - 99

AB - There are two mathematical models of elastic walls of healthy and atherosclerotic blood
vessels developed and studied. The models are included in a numerical model of global
blood circulation via recovery of the vessel wall state equation. The joint model allows
us to study the impact of arteries atherosclerotic disease of a set of arteries on
regional haemodynamics.

LA - eng

KW - atherosclerosis; mathematical modelling; blood flow; arterial wall; wall state equation; mathematical modeling

UR - http://eudml.org/doc/222340

ER -

## References

top- G. Cheng, H. Loree, R. Kamm, M. Fishbein, R. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation.Circulation, 87 (1993), 1179–1187.
- L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics, Vol. 1. Heidelberg, Springer, 2009. Zbl1300.92005
- A. Green, J. Adkins. Large Elastic Deformation. Clarendon Press, Oxford, 1970. Zbl0227.73067
- G. Holzapfel, R. Ogden (Eds.). Mechanics of Biological Tissue, Vol. XII. 2006.
- G. Holzapfel, R. Ogden. Constitutive modelling of arteries.Proc. R. Soc. A, 466 (2010), No. 2118, 1551–1597. Zbl1197.74075
- J. Humphrey. Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A459, (2003), 3–46. Zbl1116.74385
- V. Koshelev, S. Mukhin, T. Sokolova, N. Sosnin, A. Favorski. Mathematical modelling of cardio-vascular hemodynamics with account of neuroregulation. Matem. Mod., 19 (2007), No. 3, 15–28 (in Russian).
- R. Lee, A. Grodzinsky, E. Frank, R. Kamm, F. Schoen. Structuredependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques.Circulation, 83 (1991), 1764–1770.
- J. Ohayonet al.Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: Potential impact for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol.293 (2007), 1987–1996.
- T.J. Pedley, X.Y. Luo. Modelling flow and oscillations in collapsible tubes.Theor. Comp. Fluid Dyn., 10 (1998), No. 1–4, f–294. Zbl0931.74024
- A. Quarteroni, L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. In: Handbook of numerical analysis, Vol.XII, Amsterdam, Elsevier, 2004, 3–127.
- W. Riley, R. Barnes, et al.Ultrasonic measurement of the elastic modulus of the common carotid. The Atherosclerosis Risk in Communities (ARIC) Study.Stroke, 23 (1992), 952–956.
- M. Rosar, C. Peskin. Fluid flow in collapsible elastic tubes: a three-dimensional numerical model.New York J. Math., 7 (2001), 281–302. Zbl1051.76016
- S.S. Simakov, A.S. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances.Mat. Mod. Comp. Sim., 1 (2009), 283–295. Zbl1150.76570
- C. Tu, C. Peskin. Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods.SIAM J. Sci. Stat. Comp., 6 (1992), No. 13, 1361–1376. Zbl0760.76067
- Y.V. Vassilevski, S.S. Simakov, S.A. Kapranov. A multi-model approach to intravenous filter optimization.Int. J. Num. Meth. Biomed. Engrg., 26 (2010), No. 7, 915–925. Zbl1193.92067
- Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov, T. Dobroserdova. Blood flow simulation in atherosclerotic vascular network using fiber-spring representation of diseased wall. Math. Model. Nat. Phen. (in press), 2011. Zbl1229.35308
- R. Vito, S. Dixon. Blood vessel constitutive models, 1995-2002. Annu. Rev. Biomed. Engrg., 5 (2003), 413–439.
- R. Wulandana. A nonlinear and inelastic constitutive equation for human cerebral arterial and aneurysm walls. Dissertation, University of Pittsburgh, Pittsburgh, 2003.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.