Solitons and Gibbs Measures for Nonlinear Schrödinger Equations
Mathematical Modelling of Natural Phenomena (2012)
- Volume: 7, Issue: 2, page 95-112
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Ablowitz, B. Prinar, A. Trubatch. Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series, No. 302, Cambridge University Press, 2004.
- Yu.V. Bludov, V.V. Konotop, N. Akhmediev. Matter rogue waves. Phys. Rev. A, 80 (2009), No. 3, 033610.
- J.L. Bona, Y.A. Li. Decay and analyticity of solitary waves. J. Math. Pures Appl.76 (1997), No. 5, 377-430.
- J. Bourgain. Periodic Nonlinear Schrödinger Equation and Invariant Measures. Comm. Math. Phys.166 (1994), No. 1, 1–26.
- J. Bourgain. Invariant measures for NLS in Infinite Volume. Comm. Math. Phys.210 (2000), No. 3, 605–620.
- J. Bourgain. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Comm. Math. Phys.176 (1996), No. 2, 421–445.
- J. Bourgain. On nonlinear Schrödinger equations, Les relations entre les mathématiques et la physique théorique, 11-21, Inst. Hautes Études Sci., Bures-sur-Yvette, 1998.
- D. Brydges, G. Slade. Statistical Mechanics of the 2-Dimensional Focusing Nonlinear Schrödinger Equation, Comm. Math. Phys.182 (1996), No. 2, 485–504.
- R. Burioni, D. Cassi, P. Sodano, A. Trombettoni, A. Vezzani. Soliton propagation on chains with simple nonlocal defects, Phys. D216 (2006), No. 1, 71–76.
- Y. Burlakov. The phase space of the cubic Schroedinger equation : A numerical study. Thesis (Ph.D.)–University of California, Berkeley. Preprint 740 (1998).
- N. Burq, N. Tzvetkov. Random data Cauchy theory for supercritical wave equations I : local theory. Invent. Math.173 (2008), No. 3, 449–475.
- N. Burq, N. Tzvetkov. Random data Cauchy theory for supercritical wave equations II : a global existence result. Invent. Math.173 (2008), No. 3477–496.
- L. Caffarelli, S. Salsa, L. Silvestre. Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian. Invent. Math.1712008, No. 2, 425–461.
- T. Cazenave. Semilinear Schrödinger equations. Courant Lecture Notes, No. 10, American Mathematical Society and Courant Institute of Mathematical Sciences, New York, 2003.
- T. Cazenave, P.-L. Lions. Orbital stability of standing waves for some nonlinear Schrodinger equations. Comm. Math. Phys.85 (1982), no. 4, 549–561.
- S. Chatterjee, K. Kirkpatrick. Probabilistic methods for discrete nonlinear Schrödinger equations, to appear in Comm. Pure Appl. Math.
- M. Christ, J. Colliander, T. Tao. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math.125 (2003), no. 6, 1235–1293.
- J. Colliander, T. Oh. Almost sure well-posedness of the periodic cubic nonlinear Schrödinger equation below L2, arXiv :0904.2820.
- R. Cont, P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series, Boca Raton, FL, 2004.
- L. Erdős, B. Schlein, H.-T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math.167 (2007), No. 3515–614.
- L. Erdős, B. Schlein, H.-T. Yau. Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate. Ann. Math. (2)172 (2010), no. 1, 291–370.
- P. Felmer, A. Quaas, J. Tan. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Preprint : URIhttp://www.capde.cl/publication/abstract/frac-FQTreview1.pdf
- S. Flach, K. Kladko, R.S. MacKay. Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices, Phys. Rev. Lett.78 (1997), 1207–1210.
- Yu. Gaididei, S. Mingaleev, P. Christiansen, K. Rasmussen. Effect of nonlocal dispersion on self-trapping excitations. Phys. Rev. E55 (1997), No. 5, 6141–6150.
- Yu. Gaididei, S. Mingaleev, P. Christiansen, K. Rasmussen. Effect of nonlocal dispersion on self-interacting excitations. Phys. Lett. A222 (1996), 152-156.
- J. Ginibre, G. Velo. On a class of nonlinear Schrodinger equations. I. The Cauchy problem, general case. J. Funct. Anal.32 (1979), no. 1, 1–32.
- Z. Guo, Y. Wang. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrdinger and wave equation. arXiv :1007.4299.
- J. Holmer, R. Platte, S. Roudenko. Blow-up criteria for the 3D cubic nonlinear Schrodinger equation, Nonlinearity23 (2010), No. 4, 977–1030.
- R. Jordan, C. Josserand. Statistical equilibrium states for the nonlinear Schr"odinger equation. Nonlinear waves : computation and theory (Athens, GA,1999). Math. Comput. Simulation55 (2001), No. 4-6, 433–447.
- R. Jordan, B. Turkington. Statistical equilibrium theories for the nonlinear Schr"odinger equation, Advances in wave interaction and turbulence (South Hadley, MA, 2000), 27–39, Contemp. Math. 283, Amer. Math. Soc., Providence, RI, 2001.
- T. Kato. On nonlinear Schrödinger equations. t Ann. Inst. H. Poincaré Phys. Theor.46 (1987), no. 1, 113–129.
- C. Kenig, Y. Martel, L Robbiano. Local well-posedness and blow up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Preprint arXiv :1006.0122
- P. Kevrekidis, D. Pelinovsky, A. Stefanov. Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation. SIAM J. Math. Anal.41 (2009), No. 5, 2010–2030.
- K. Kirkpatrick, E. Lenzmann, G. Staffilani. On the continuum limit for discrete NLS with long-range lattice interactions, arXiv :1108.6136v1.
- K. Kirkpatrick, B. Schlein, G. Staffilani. Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics. Amer. J. Math.133 (2011), no. 1, 91–130.
- A. Komech, E. Kopylova, M. Kunze. Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations. Appl. Anal.85 (2006), no. 12, 1487–1508.
- O. A. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, No. 49. Springer-Verlag New York, 1985.
- N. Laskin. Fractional Schrödinger equation. Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp.
- J. Lebowitz, H. Rose, E. Speer. Statistical Mechanics of the Nonlinear Schrodinger equation, J. Stat. Phys.50 (1988), No. 3-4, 657–687.
- R. S. MacKay, S. Aubry. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity7 (1994), No. 6, 1623–1643.
- H. P. McKean, K. L. Vaninsky. Brownian motion with restoring drift : the petit and micro-canonical ensembles. Comm. Math. Phys.160 (1994), no. 3, 615–630.
- H. P. McKean, K. L. Vaninsky. Action-angle variables for the cubic Schrödinger equation. Comm. Pure Appl. Math.50 (1997), no. 6, 489–562.
- H. P. McKean, K. L. Vaninsky. Cubic Schrödinger : the petit canonical ensemble in action-angle variables. Comm. Pure Appl. Math.50 (1997), no. 7, 593–622.
- B. Malomed, M. I. Weinstein. Soliton dynamics in the discrete nonlinear Schrödinger equation. Phys. Lett. A220 (1996), 91–96.
- M. Maris. On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal.51 (2002), No. 6, 1073–1085.
- S. Mingaleev, P. Christiansen, Yu. Gaididei, M. Johannson, K. Rasmussen. Models for Energy and Charge Transport and Storage in Biomolecules. J. Biol. Phys.25 (1999), 41-63.
- L. Molinet. On ill-posedness for the one-dimensional periodic cubic Schrödinger equation. Math. Res. Lett.16 (2009), no. 1, 111-120.
- A. Nahmod, T. Oh, L. Rey-Bellet, G. Staffilani. Invariant weighted Wiener measures adn almost sure global well-posedness for the periodic derivative NLS. arXiv :1007.1502.
- T. Oh, C. Sulem. On the one-dimensional cubic nonlinear Schrodinger equation below L2, arXiv :1007.2073.
- D. Pelinovsky, P. Kevrekidis. Stability of discrete dark solitons in nonlinear Schrödinger lattices. J. Phys. A41 (2008), 185–206.
- D. Pelinovsky, A. Sakovich. Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation. Physica D240 (2011), 265–281.
- D. Pelinovsky, A. Stefanov. On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension. J. Math. Phys. 49, (2008), no. 11,113501, 17 pp.
- B. Rider. On the ∞-volume limit of focussing cubic Schrödinger equation. Comm. Pure Appl. Math.55 (2002), No. 10, 1231–1248.
- B. Rider. Fluctuations in the thermodynamic limit of focussing cubic Schrödinger. J. Stat. Phys.113 (2003), 575–594.
- B. Rumpf. Simple statistical explanation for the localization of energy in nonlinear lattices with two conserved quantities. Phys. Rev. E69 (2004), 016618.
- S. Samko, A. Kilbas, O. Marichev. Fractional Integrals and Derivatives : Theory and Applications. Gordon and Breach Science Publishers, Amsterdam, 1993.
- Y. Sire, E. Valdinoci. Fractional Laplacian phase transitions and boundary reactions : a geometric inequality and a symmetry result. J. Funct. Anal.256 (2009), no. 6, 1842–1864.
- A. Stefanov, P. Kevrekidis. Asymptotic behaviour of small solutions for the discrete nonlinear Schrodinger and Klein-Gordon equations. Nonlinearity18 (2005), No. 4, 1841-1857.
- C. Sulem, P.L. Sulem. The nonlinear Schrödinger equation : self-focusing and wave collapse. Springer, 1999.
- N. Tzvetkov. Invariant measures for the defocusing NLS. Ann. Inst. Fourier (Grenoble)58 (2008), no. 7, 2543–2604.
- M. I. Weinstein. Excitation Thresholds for Nonlinear Localized Modes on Lattices. Nonlinearity12 (1999), No. 3, 673–691.
- V. E. Zakharov. Stability of periodic waves of finite amplitude on a surface of deep fluid. J. Appl. Mech. Tech. Phys.2 (1968), 190–198.