Hydrodynamics of Inelastic Maxwell Models
Mathematical Modelling of Natural Phenomena (2011)
- Volume: 6, Issue: 4, page 37-76
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topGarzó, V., and Santos, A.. "Hydrodynamics of Inelastic Maxwell Models." Mathematical Modelling of Natural Phenomena 6.4 (2011): 37-76. <http://eudml.org/doc/222235>.
@article{Garzó2011,
abstract = {An overview of recent results pertaining to the hydrodynamic description (both Newtonian
and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic
Maxwell models is presented. The use of this mathematical model allows us to get exact
results for different problems. First, the Navier–Stokes constitutive equations with
explicit expressions for the corresponding transport coefficients are derived by applying
the Chapman–Enskog method to inelastic gases. Second, the non-Newtonian rheological
properties in the uniform shear flow (USF) are obtained in the steady state as well as in
the transient unsteady regime. Next, an exact solution for a special class of Couette
flows characterized by a uniform heat flux is worked out. This solution shares the same
rheological properties as the USF and, additionally, two generalized transport
coefficients associated with the heat flux vector can be identified. Finally, the problem
of small spatial perturbations of the USF is analyzed with a Chapman–Enskog-like method
and generalized (tensorial) transport coefficients are obtained. },
author = {Garzó, V., Santos, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {kinetic theory; Boltzmann equation; granular gases; inelastic Maxwell models; transport coefficients; hydrodynamics},
language = {eng},
month = {7},
number = {4},
pages = {37-76},
publisher = {EDP Sciences},
title = {Hydrodynamics of Inelastic Maxwell Models},
url = {http://eudml.org/doc/222235},
volume = {6},
year = {2011},
}
TY - JOUR
AU - Garzó, V.
AU - Santos, A.
TI - Hydrodynamics of Inelastic Maxwell Models
JO - Mathematical Modelling of Natural Phenomena
DA - 2011/7//
PB - EDP Sciences
VL - 6
IS - 4
SP - 37
EP - 76
AB - An overview of recent results pertaining to the hydrodynamic description (both Newtonian
and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic
Maxwell models is presented. The use of this mathematical model allows us to get exact
results for different problems. First, the Navier–Stokes constitutive equations with
explicit expressions for the corresponding transport coefficients are derived by applying
the Chapman–Enskog method to inelastic gases. Second, the non-Newtonian rheological
properties in the uniform shear flow (USF) are obtained in the steady state as well as in
the transient unsteady regime. Next, an exact solution for a special class of Couette
flows characterized by a uniform heat flux is worked out. This solution shares the same
rheological properties as the USF and, additionally, two generalized transport
coefficients associated with the heat flux vector can be identified. Finally, the problem
of small spatial perturbations of the USF is analyzed with a Chapman–Enskog-like method
and generalized (tensorial) transport coefficients are obtained.
LA - eng
KW - kinetic theory; Boltzmann equation; granular gases; inelastic Maxwell models; transport coefficients; hydrodynamics
UR - http://eudml.org/doc/222235
ER -
References
top- M. Abramowitz, I. A. Stegun, eds. Handbook of Mathematical Functions. Dover, New York, 1972, ch. 15.
- A. Astillero, A. Santos. Aging to non-Newtonian hydrodynamics in a granular gas. Europhys. Lett., 78 (2007), No. 2, 24002.
- A. Baldasarri, U. M. B. Marconi, A. Puglisi. Influence of correlations on the velocity statistics of scalar granular gases. Europhys. Lett., 58 (2002), No. 1, 14–20.
- A. Barrat, E. Trizac, M.H. Ernst. Quasi-elastic solutions to the nonlinear Boltzmann equation for dissipative gases. J. Phys. A: Math. Theor., 40 (2007), No. 15, 4057–4076.
- E. Ben-Naim, P. L.Krapivsky. Multiscaling in inelastic collisions. Phys. Rev. E, 61 (2000), No. 1, R5–R8.
- E. Ben-Naim, P. L. Krapivsky. Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E, 66 (2002), No. 1, 011309.
- E. Ben-Naim, P. L. Krapivsky. Impurity in a granular fluid. Eur. Phys. J. E, 8 (2002), No. 5, 507–515.
- E. Ben-Naim, P. L. Krapivsky. The inelastic Maxwell model. Granular Gas Dynamics. T. Pöschel, S. Luding, eds. Lecture Notes in Physics 624, Springer, Berlin, Germany, 2003, 65–94.
- G. A. Bird. Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon Press, Oxford, UK, 1994.
- A. V. Bobylev, J. A. Carrillo, I. M. Gamba. On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98 (2000), Nos. 3–4, 743–773.
- A. V. Bobylev, C. Cercignani. Moment equations for a granular material in a thermal bath. J. Stat. Phys., 106 (2002), Nos. 3–4, 547–567.
- A. V. Bobylev, C. Cercignani. Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys., 110 (2003), Nos. 1–2, 333–375.
- A. V. Bobylev, C. Cercignani, G. Toscani. Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys., 111 (2003), Nos. 1–2, 403–416.
- A. V. Bobylev, I. M. Gamba. Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails. J. Stat. Phys.124 (2006), Nos. 2–4, 497–516.
- F. Bolley, J. A. Carrillo. Tanaka theorem for inelastic Maxwell models. Comm. Math. Phys., 276 (2007), No. 2, 287–314.
- J. J. Brey, D. Cubero. Hydrodynamic transport coefficients of granular gases. Granular Gases. T. Pöschel, T., S. Luding, eds. Lecture Notes in Physics 564, Springer, Berlin, Germany, 2001, 59–78.
- J. J. Brey, J. W. Dufty, C. S. Kim, A. Santos. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58 (1998), No. 4, 4638–4653.
- J. J. Brey, J. W. Dufty, A. Santos. Dissipative dynamics for hard spheres. J. Stat. Phys., 87 (1997), Nos. 5–6, 1051–1066.
- J. J. Brey, M. I. García de Soria, P. Maynar. Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases. Phys. Rev. E, 82 (2010), No. 2, 021303.
- J. J. Brey, M. J. Ruiz-Montero, D. Cubero. Homogeneous cooling state of a low-density granular gas. Phys. Rev. E, 54 (1996), No. 4, 3664–3671.
- N. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Clarendon Press, Oxford, UK, 2004.
- N. Brilliantov, T. Pöschel. Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett., 74 (2006), No. 3, 424–430; 75 (2006), 1, 188.
- R. Brito, M. H. Ernst. Anomalous velocity distributions in inelastic Maxwell gases. Advances in Condensed Matter and Statistical Mechanics. E. Korutcheva, R. Cuerno, eds. Nova Science Publishers, New York, USA, 2004, 177–202.
- C. S. Campbell. Rapid granular flows. Annu. Rev. Fluid Mech., 22 (1990), 57–92.
- J. A. Carrillo, C. Cercignani, I. M. Gamba. Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E, 62 (2000), No. 6, 7700–7707.
- C. Cercignani. Shear flow of a granular material. J. Stat. Phys., 102 (2001), Nos. 5–6, 1407–1415.
- S. Chapman, T. G. Cowling. The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge, UK, 1970.
- F. Coppex, M. Droz, E. Trizac. Maxwell and very hard particle models for probabilistic ballistic annihilation: Hydrodynamic description. Phys. Rev. E, 72 (2005), No. 2, 021105.
- J. W. Dufty. Kinetic theory and hydrodynamics for a low density granular gas. Adv. Compl. Syst., 4 (2001), No. 4, 397–406.
- J. W. Dufty, J. J. Brey. Origins of Hydrodynamics for a Granular Gas. Modellings and Numerics of Kinetic Dissipative Systems. L. Pareschi, G. Russo, G., G. Toscani, eds. Nova Science Publishers, New York, USA, 2006, 17–30.
- M. H. Ernst. Exact solutions of the nonlinear Boltzmann equation. Phys. Rep., 78 (1981), No. 1, 1–171.
- M. H. Ernst, R. Brito. High-energy tails for inelastic Maxwell models. Europhys. Lett., 58 (2002), No. 2, 182–187.
- M. H. Ernst, R. Brito. Scaling solutions of inelastic Boltzmann equations with over-populated high-energy tails. J. Stat. Phys., 109 (2002), Nos. 3–4, 407–432.
- M. H. Ernst, R. Brito. Driven inelastic Maxwell models with high energy tails. Phys. Rev. E, 65 (2002), No. 4, 040301.
- M. H. Ernst, E. Trizac, A. Barrat. The rich behaviour of the Boltzmann equation for dissipative gases. Europhys. Lett., 76 (2006), No. 1, 56–62.
- M. H. Ernst, E. Trizac, A. Barrat. The Boltzmann equation for driven systems of inelastic soft spheres. J. Stat. Phys., 124 (2006), Nos. 2–4, 549–586.
- S. E. Esipov, T. Pöschel. The granular phase diagram. J. Stat. Phys., 86 (1997), Nos. 5–6, 1385–1395.
- V. Garzó. Nonlinear transport in inelastic Maxwell mixtures under simple shear flow. J. Stat. Phys., 112 (2003), Nos. 3–4, 657–683.
- V. Garzó. Transport coefficients for an inelastic gas around uniform shear flow: Linear stability analysis. Phys. Rev. E, 73 (2006), No. 2, 021304.
- V. Garzó. Shear-rate dependent transport coefficients for inelastic Maxwell models. J. Phys. A: Math. Theor., 40 (2007), No. 35, 10729–10757.
- V. Garzó. Mass transport of an impurity in a strongly sheared granular gas. J. Stat. Mech., (2007), P02012.
- V. Garzó, A. Astillero. Transport coefficients for inelastic Maxwell mixtures. J. Stat. Phys., 118 (2005), Nos. 5–6, 935–971.
- V. Garzó, J. W. Dufty. Dense fluid transport for inelastic hard spheres. Phys. Rev. E, 59 (1999), No. 5, 5895–5911.
- V. Garzó, J. W. Dufty. Homogeneous cooling state for a granular mixture. Phys. Rev. E, 60 (1999), No. 5, 5706–5713.
- V. Garzó, J. W. Dufty. Hydrodynamics for a granular mixture at low density. Phys. Fluids, 14 (2002), No. 4, 1476–1490.
- V. Garzó, J. W. Dufty, C. M. Hrenya. Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys. Rev. E, 76 (2007), No. 3, 031303.
- V. Garzó, C. M. Hrenya, J. W. DuftyEnskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys. Rev. E, 76 (2007), No. 3, 031304.
- V. Garzó, J. M. Montanero. Transport coefficients of a heated granular gas. Physica A, 313 (2002), Nos. 3–4, 336–356.
- V. Garzó, A. Santos. Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer, Dordrecht, The Netherlands, 2003.
- V. Garzó, V., and A. Santos. Third and fourth degree collisional moments for inelastic Maxwell models. J. Phys. A: Math. Theor., 40 (2007), No. 50, 14927–14943.
- V. Garzó, A. Santos, J. M. Montanero. Modifed Sonine approximation for the Navier-Stokes transport coefficients of a granular gas. Physica A, 376 (2007), 94–107.
- V. Garzó, F. Vega Reyes, J. M. MontaneroModified Sonine approximation for granular binary mixtures. J. Fluid Mech. (2009), 623, 387–411.
- I. Goldhirsch. Rapid granular flows. Annu. Rev. Fluid Mech., 35 (2003), 267–293.
- A. Goldshtein, M. Shapiro. Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech., 282 (1995), 75–114.
- P. K. Haff. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134 (1983), 401–430.
- K. Kohlstedt, A. Snezhko, M. V. Sapozhnikov, I. S. Aranson, E. Ben-NaimVelocity distributions of granular gases with drag and with long-range interactions. Phys. Rev. Lett., 95 (2005), No. 6, 068001.
- P. L. Krapivsky, E. Ben-Naim. Nontrivial velocity distributions in inelastic gases. J. Phys. A: Math. Gen., 35 (2002), No. 11, L147–L152.
- M. Lee, J. W. Dufty. Transport far from equilibrium: Uniform shear flow. Phys. Rev. E, 56 (1997), No. 2, 1733–1745.
- A. W. Lees, S. F. Edwards. The computer study of transport processes under extreme conditions. J. Phys. C, 5 (1972), No. 5, 1921–1928.
- J. F. Lutsko. Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E, 72 (2005), No. 2, 021306.
- J. F. LutskoChapman–Enskog expansion about nonequilibrium states with application to the sheared granular fluid. Phys. Rev. E, 73 (2006), No. 2, 021302.
- U. M. B. Marconi, A. Puglisi. Mean-field model of freely cooling inelastic mixtures. Phys. Rev. E, 65 (2002), No. 5, 051305.
- U. M. B. Marconi, A. Puglisi. Steady state properties of a mean field model of driven inelastic mixtures. Phys. Rev. E, 66 (2002), No. 1, 011301.
- J. C. Maxwell. On the Dynamical Theory of Gases. Phil. Trans. Roy. Soc. (London), 157 (1867), 49–88; reprinted in S. G. Brush. The Kinetic Theory of Gases. An Anthology of Classic Papers with Historical Commentary. Imperial College Press, London, UK, 2003, 197–261.
- J. M. Montanero, A. Santos. Computer simulation of uniformly heated granular fluids. Gran. Matt., 2 (2000), No. 2, 53–64.
- J. M. Montanero, A. Santos, V. Garzó. First-order Chapman-Enskog velocity distribution function in a granular gas. Physica A, 376 (2007), 75–93.
- O. Narayan, S. Ramaswamy. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett., 89 (2002), No. 20, 200601.
- A. Santos. Transport coefficients of d-dimensional inelastic Maxwell models. Physica A, 321 (2003), Nos. 3–4, 442–466.
- A. Santos. A simple model kinetic equation for inelastic Maxwell particles. Rarefied Gas Dynamics: 25th International Symposium on Rarefied Gas Dynamics. A. K. Rebrov, M. S. Ivanov, eds. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2007, pp 143-148.
- A. Santos. Solutions of the moment hierarchy in the kinetic theory of Maxwell models. Cont. Mech. Therm., 21 (2009), No. 5, 361–387.
- A. Santos, M. H. Ernst. Exact steady-state solution of the Boltzmann equation: A driven one-dimensional inelastic Maxwell gas. Phys. Rev. E, 68 (2003), No. 1, 011305.
- A. Santos, V. Garzó. Exact non-linear transport from the Boltzmann equation. Rarefied Gas Dynamics. J. Harvey, G. Lord, eds. Oxford University Press, Oxford, UK, 1995, 13–22.
- A. Santos, V. Garzó. Simple shear flow in inelastic Maxwell models. J. Stat. Mech., (2007), P08021.
- A. Santos, V. Garzó, J. W. Dufty. Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E, 69 (2004), No. 6, 061303.
- A. Santos, V. Garzó, F Vega Reyes. An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux. Eur. Phys. J.-Spec. Top., 179 (2009), No. 1, 141–156.
- A. Santos, J. M. Montanero. The second and third Sonine coefficients of a freely cooling granular gas revisited. Gran. Matt., 11 (2009), No. 3, 157-168.
- M. Tij, E. E. Tahiri, J. M. Montanero, V. Garzó, A. Santos, J. W. Dufty. Nonlinear Couette flow in a low density granular gas. J. Stat. Phys., 103 (2001), Nos. 5–6, 1035–1068.
- E. Trizac, E., P. L. Krapivsky. Correlations in ballistic processes. Phys. Rev. Lett., 91 (2003), No. 21, 218302.
- C. Truesdell, R. G. Muncaster. Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York, USA, 1980.
- T. P. C. van Noije, M. H. Ernst. Velocity distributions in homogeneous granular fluids: the free and the heated case. Gran. Matt., 1 (1998), No. 2, 57–64.
- F. Vega Reyes, V. Garzó, A. Santos. Class of dilute granular Couette flows with uniform heat flux. Phys. Rev. E, 83 (2011), No. 2, 021302.
- F. Vega Reyes, A. Santos, V. Garzó. Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common?Phys. Rev. Lett., 104 (2010), No. 2, 028001.
- F. Vega Reyes, J. S. Urbach. Steady base states for Navier–Stokes granular hydrodynamics with boundary heating and shear. J. Fluid Mech., 636 (2009), 279–293.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.