Displaying similar documents to “Hydrodynamics of Inelastic Maxwell Models”

Modelling of natural convection flows with large temperature differences : a benchmark problem for low Mach number solvers. Part 1. Reference solutions

Patrick Le Quéré, Catherine Weisman, Henri Paillère, Jan Vierendeels, Erik Dick, Roland Becker, Malte Braack, James Locke (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature...

Vorticity dynamics and turbulence models for large-Eddy simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and...

On the effect of temperature and velocity relaxation in two-phase flow models

Pedro José Martínez Ferrer, Tore Flåtten, Svend Tollak Munkejord (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed...

On the effect of temperature and velocity relaxation in two-phase flow models

Pedro José Martínez Ferrer, Tore Flåtten, Svend Tollak Munkejord (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed...