Quasichemical Models of Multicomponent Nonlinear Diffusion
A.N. Gorban; H.P. Sargsyan; H.A. Wahab
Mathematical Modelling of Natural Phenomena (2011)
- Volume: 6, Issue: 5, page 184-262
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- G.I. Barenblatt. On some unsteady motions of a liquid or a gas in a porous medium. Prikl. Mat. Mekh., 16 (1952), 67–78.
- G.I. Barenblatt, Y.B. ZelŠdovich. Self-similar solutions as intermediate asymptotics. Ann. Rev. Fluid Mech., 4 (1972), 285–312.
- L. Bertini, C. Landim, S. Olla. Derivation of Cahn–Hilliard Equations from Ginzburg-Landau Models. J. Stat. Phys., 88 (1997), Nos. 1/2, 365–381.
- T. Blesgen, U. Weikard. Multi-component Allen-Cahn equation for elastically stressed solids. Electron. J. Diff. Eqns., 89 (2005), 1–17.
- M. Boudart. From the century of the rate equation to the century of the rate constants: a revolution in catalytic kinetics and assisted catalyst design. Catal. Lett., 65 (2000), 1–3.
- L. Boltzmann. Lectures on gas theory. U. of California Press, Berkeley, CA, 1964.
- G.E. Briggs, J.B.S. Haldane. A note on the kinetics of enzyme action. Biochem. J., 19 (1925), 338–339.
- R.A. Brownlee, A.N. Gorban, J. Levesley. Nonequilibrium entropy limiters in lattice Boltzmann methods. Physica A, 387 (2008), 385–406.
- V.I. Bykov, S.E. Gilev, A.N. Gorban, G.S. Yablonskii. Imitation modeling of the diffusion on the surface of a catalyst. Dokl. Akad. Nauk SSSR, 283 (1985), 1217–1220.
- V.I. Bykov, A.N. Gorban, G.S. Yablonskii. Description of non-isothermal reactions in terms of Marcelin-De-Donder Kinetics and its generalizations. React. Kinet. Catal. Lett.20 (1982), 261–265.
- J.W. Cahn. Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys., 30 (1959), 1121–1124.
- J.W. Cahn, J.E. Hilliard. Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys., 28 (1958), 258–266.
- J.W. Cahn, J.E. Hilliard. Spinodal decomposition: A reprise. Acta Metallurgica, 19 (1971), 151–161.
- H.B. Callen. Thermodynamics and an introduction to themostatistics (2nd ed.). John Wiley & Sons, NY, 1985.
- C. Cercignani, M. Lampis. On the H-theorem for polyatomic gases. J. Stat. Phys., 26 (1981), 795–801.
- B. Chopard, M. Droz. Cellular automata modeling of physical systems. Cambridge University Press, Cambridge, UK, 1998.
- R. Clausius. Über verschiedene für die Anwendungen bequeme Formen der Hauptgleichungen der Wärmetheorie. Poggendorffs Annalen der Physic und Chemie, 125 (1865), 353–400.
- A.J. Chorin, O.H. Hald, R. Kupferman. Optimal prediction with memory. Physica D, 166 (2002), 239–257.
- F. Coester. Principle of detailed balance. Phys. Rev., 84, 1259 (1951)
- S.R. De Groot, P. Mazur. Non-equilibrium Thermodynamics. North-Holland, Amsterdam, 1962.
- K. Denbigh. The principles of chemical equilibrium. Cambridge University Press, Cambridge, UK, 1981.
- S. Dushman, I. Langmuir. The diffusion coefficient in solids and its temperature coefficient. Phys. Rev., 20 (1922), 113.
- P. Ehrenfest, T. Ehrenfest-Afanasyeva. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. In: Mechanics Enziklopädie der Mathematischen Wissenschaften, Vol. 4. Leipzig, 1911. (Reprinted in: Ehrenfest, P., Collected Scientific Papers. North–Holland, Amsterdam, 1959, pp. 213–300.)
- A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 17 (1905), 549–560.
- A. Einstein. Strahlungs-Emission und -Absorption nach der Quantentheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft, 18 (1916), No. 13/14, Braunschweig, Vieweg, 318–323.
- C.M. Elliott, Z. Songmu. On the Cahn-Hilliard equation. Arch. Rat. Mechan. Anal., 96 (1986), 339–357.
- C.M. Elliott, A.M. Stuart. The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal., 30 (1993), 1622–1663.
- H. Eyring. The activated complex in chemical reactions. J. Chem. Phys., 3 (1935), 107–115.
- M. Feinberg. On chemical kinetics of a certain class. Arch. Rat. Mechan. Anal., 46 (1972), 1–41.
- M. Feinberg. Complex balancing in general kinetic systems. Arch. Rat. Mechan. Anal., 49 (1972), 187–194.
- R.F. Feynman. Simulating physics with computers. Internat. J. Theor. Phys., 21 (1982), 467–488.
- A. Fick. Über Diffusion. Poggendorff’s Annalen der Physik und Chemie, 94 (1855), 59–86.
- R.A. Fisher. The genetical theory of natural selection. Oxford University Press, Oxford, 1930.
- F.C. Frank, D. Turnbull. Mechanism of diffusion of copper in Germanium. Phys. Rev., 104 (1956), 617–618.
- A. Fratzl, O. Penrose, J.L. Lebowitz. Modelling of phase separation in alloys with coherent elastic misfit. J. Stat. Phys., 95 (1999), 1429–1503.
- J. Frenkel. Theorie der Adsorption und verwandter Erscheinungen. Zeitschrift für Physik, 26 (1924), 117–138
- J. Frenkel. Über die Wärmebewegung in festen und flüssigen Körpern. Zeitschrift für Physik, 35 (1925), 652–669.
- G.F. Gause. The struggle for existence. Williams & Wilkins, Baltimore, 1934.
- J.W. Gibbs. On the equilibrium of heterogeneous substance. Trans. Connect. Acad., 1875–1876, 108–248; 1877–1878, 343–524.
- D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81 (1977), 2340–2361.
- D.T. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem., 58 (2007), 35–55.
- A.N. Gorban. Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis. Nauka, Novosibirsk, 1984.
- A.N. Gorban. Singularities of transition processes in dynamical systems: qualitative theory of critical delays. Electron. J. Diff. Eqns., Monograph 05, 2004. E-print: , 1997. URIhttp://arxiv.org/abs/chao-dyn/9703010
- A.N. Gorban. Basic types of coarse-graining. In: Model reduction and coarse–graining approaches for multiscale phenomena, Ed. by A.N. Gorban, N. Kazantzis, I.G. Kevrekidis, H.C. Öttinger, C. Theodoropoulos. Springer, Berlin-Heidelberg-New York, 2006, 117–176. E-print: , 2006. URIhttp://arxiv.org/abs/cond-mat/0602024
- A.N. Gorban, V.I. Bykov, G.S. Yablonskii. Macroscopic clusters induced by diffusion in catalytic Oxidation Reactions. Chem. Eng. Sci., 35 (1980), 2351–2352.
- A.N. Gorban, V.I. Bykov, G.S. Yablonskii. Essays on chemical relaxation. Novosibirsk, Nauka Publ., 1986.
- A.N. Gorban, P.A. Gorban, G. Judge. Entropy: The Markov ordering approach. Entropy, 12 (2010), 1145–1193. E-print: http://arxiv.org/abs/1003.1377, 2010.
- A.N. Gorban, I.V. Karlin, H.C. Öttinger, L.L. Tatarinova. Ehrenfest’s argument extended to a formalism of nonequilibrium thermodynamics. Phys. Rev. E, 63 (2001), 066124.
- A.N. Gorban, I.V. Karlin. Uniqueness of thermodynamic projector and kinetic basis of molecular individualism. Physica A, 336 (2004), 391–432. E-print: http://arxiv.org/abs/cond-mat/0309638, 2003.
- A.N. Gorban, I.V. Karlin. Method of invariant manifold for chemical kinetics. Chem. Eng. Sci., 58 (2003), 4751–4768.
- A.N. Gorban, I.V. Karlin. Invariant manifolds for physical and chemical kinetics. Lect. Notes Phys. 660, Springer, Berlin, Heidelberg, 2005.
- A.N. Gorban, I.V. Karlin, P. Ilg, H.C. Öttinger. Corrections and enhancements of quasi-equilibrium states. J. Non-Newtonian Fluid Mech., 96 (2001), 203–219.
- A.N. Gorban, H.P. Sargsyan. Mass action law for nonlinear multicomponent diffusion and relations between its coefficients. Kinetics and Catalysis, 27 (1986), 527.
- A.N. Gorban, M. Shahzad. QE+QSS for derivation of kinetic equations and stiffness removing. E-print: http://arxiv.org/abs/1008.3296, 2010.
- T. Graham. The Bakerian lecture: on the diffusion of liquids. Phil. Trans. R. Soc. Lond., 140 (1) (1850), 1–46; doi: 10.1098/rstl.1850.0001.
- M. Grmela, H.C. Öttinger. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E, 56 (1997), 6620–6632.
- W.S.C. Gurney, R.M. Nisbet. A note on nonlinear population transport. J. Theor. Biol., 56 (1976), 249–251.
- M.E. Gurtin. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 92 (1996), 178–192.
- I. Gyarmati. Non-equilibrium thermodynamics. Field theory and variational principles. Springer, Berlin, 1970.
- W. Heitler. Quantum Theory of Radiation. Oxford University Press, London, 1944.
- R. Hengeveld. Dynamics of biological invasions. Chapman and Hall, London, 1989.
- F. Horn, R. Jackson. General mass action kinetics. Arch. Rat. Mechan. Anal., 47 (1972), 81–116.
- W.G. Hoover. Computational statistical mechanics. Elsevier, Amsterdam, 1991.
- I.V. Karlin, A.N. Gorban, S. Succi, V. Boffi. Maximum entropy principle for lattice kinetic equations. Phys. Rev. Lett., 81 (1998), 6–9.
- L.B. Kier, P.G. Seybold, Ch-K. Cheng. Modeling chemical systems using cellular automata. Dordrecht, The Netherlands, 2005.
- J.F. Kincaid, H. Eyring, A.E. Stearn. The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid State. Chem. Rev., 28 (1941), 301–365.
- E.O. Kirkendall. Diffusion of zinc in alpha brass. Trans. Am. Inst. Min. Metall. Eng., 147 (1942), 104–110.
- A.B. Kudryavtsev, R.F. Jameson, W. Linert. The law of mass action. Springer, Berlin – Heidelberg – New York, 2001.
- K.J. Laidler, A. Tweedale. The current status of Eyring’s rate theory. In: Advances in Chemical Physics: Chemical dynamics: Papers in honor of Henry Eyring, Volume 21 (eds J. O. Hirschfelder and D. Henderson). John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007.
- L.D. Landau, E.M. Lifshitz. Fluid mechanics: Volume 6 (Course of theoretical physics). Butterworth-Heinemann, Oxford–Woburn, 1987.
- J.S. Langer, M. Bar-on, H.D. Miller. New computational method in the theory of spinodal decomposition. Phys. Rev. A, 11 (1975), 1417–1429.
- G. Lebon, D. Jou, J. Casas-Vázquez. Understanding non-equilibrium thermodynamics: Foundations, applications, Frontiers. Springer, Berlin, 2008.
- A.J. Lotka. Elements of physical biology. Williams and Wilkins, Baltimore, 1925.
- R.J.P. Lyon. Time aspects of geothermometry. Mining Eng., 11 (1959), 1145–1151.
- B.H. Mahan. Microscopic reversibility and detailed balance. An analysis. J. Chem. Educ., 52 (1975), 299–302.
- S. Maier-Paape, B. Stoth, T. Wanner. Spinodal decomposition for multicomponent cahnŰhilliard systems. J. Stat. Phys., 98 (2000), 871–896.
- E. McLaughlin. The Thermal conductivity of liquids and dense gases. Chem. Rev., 64 (1964), 389–428.
- H. Mehrer. Diffusion in solids – fundamentals, methods, materials, diffusion-controlled processes. Textbook, Springer Series in Solid-State Sciences, Vol. 155, Springer, Berlin – Heidelberg – New York, 2007.
- H. Mehrer, N.A. Stolwijk. Heroes and highlights in the history of diffusion. Diffusion Fundamentals, 11 (2009), 1–32.
- L. Michaelis, M. Menten. Die Kinetik der Intervintwirkung. Biochemistry Zeitung, 49 (1913), 333–369.
- H. Nakajima. The discovery and acceptance of Kirkendall effect: The result of a short research career. JOM, 49 (1997), 15–19.
- T.N. Narasimhan. Energetics of the Kirkendall effect. Current Science, 93 (2007), 1257–1264.
- L. Onsager. Reciprocal relations in irreversible processes. I. Phys. Rev., 37 (1931), 405–426.
- L. Onsager. Reciprocal relations in irreversible processes. II. Phys. Rev., 38 (1931), 2265–2279.
- H.C. Öttinger. Beyond equilibrium thermodynamics. Wiley-Blackwell, Hoboken, NJ, 2005.
- H.C. Öttinger. Constraints in nonequilibrium thermodynamics: General framework and application to multicomponent diffusion. J. Chem. Phys., 130 (2009), 114904.
- H.C. Öttinger, M. Grmela. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E, 56 (1997), 6633–6655.
- K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama. Surface science: An introduction. Springer, Berlin – Heidelberg, 2003.
- S.V. Petrovskii, B.-L. Li. Exactly solvable models of biological invasion. Chapman & Hall / CRC Press, Boca–Raton–London–New York–Washington D.C., 2006.
- J. Philibert. One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundamentals, 2 (2005), 1.1–1.10.
- W.C. Roberts-Austen. Bakerian lecture on the diffusion in metals. Phil. Trans. Roy. Soc. A 187, (1896). Part I: Diffusion of Molten Metals. 383–403; Part II: Diffusion of Solid Metals. 404–415.
- D. Rothman, S. Zaleski. Lattice-gas models of phase separation: interfaces, phase transitions and multiphase flow. Rev. Mod. Phys., 66 (1994), 1417–1480.
- P.K. Schelling, S.R. Phillpot, P. Keblinski. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B, 65 (2002), 144306.
- N.N. Semenov. Some problems relating to chain reactions and to the theory of combustion. Nobel Lecture, December 11, 1956. In: Nobel lectures in chemistry 1942–1962. World Scientific, Hackensack, NJ, 1999.
- E. Seneta. Nonnegative matrices and Markov chains. Springer, New York, 1981.
- N. Shigesada, K. Kawasaki. Biological invasions: theory and practice. Oxford University Press, Oxford, 1997.
- E.C.G. Stueckelberg. Théorème H et unitarité de S. Helv. Phys. Acta, 25 (1952), 577–580.
- S. Succi. The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford, UK, 2001.
- S. Succi, I. Karlin, H. Chen. Role of the H theorem in lattice Boltzmann hydrodynamic simulations (Colloquium). Rev. Mod. Phys., 74 (2002), 1203–1220.
- S. Succi, “Lattice Boltzmann at all-scales: from turbulence to DNA translocation”, Mathematical Modelling Centre Distinguished Lecture, University of Leicester, Leicester, UK, 15 November 2006.
- T. Teorell. Studies on the “diffusion effect” upon ionic distribution–I Some theoretical considerations. Proc. N. A. S. USA, 21 (1935), 152–161.
- T. Teorell. Studies on the diffusion effect upon ionic distribution–II Experiments on ionic accumulation. The Journal of General Physiology, 21 (1937), 107–122.
- T. Toffoli, N. Margolus. Cellular automata machines: A new environment for modeling. MIT Press, Cambridge, MA, 1987.
- C. Tuijn. On the history of models for solid–state diffusion. Defect and Diffusion Forum, 143-147 (1997), 11–20.
- N.G. Van Kampen. Nonlinear irreversible processes. Physica, 67 (1973), 1–22.
- P. Van Mieghem. Performance analysis of communications networks and systems. Cambridge University Press, Cambridge, 2006.
- J.H. Van’t Hoff. Etudes de dynamique chimique. Frederic Muller, Amsterdam, 1884.
- J.L. Vázquez. The porous medium equation. Mathematical Theory. Oxford University Press, Oxford, 2007.
- A.I. Volpert, S.I. Khudyaev. Analysis in classes of discontinuous functions and equations of mathematical physics. Nijoff, Dordrecht, 1985.
- V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei, 2 (1926), 31–113.
- J. Von Neumann, A.W. Burks. Theory of self-reproducing automata. University of Illinois Press, Urbana, 1966.
- S. Watanabe. Symmetry of physical laws. Part I. Symmetry in space-time and balance theorems. Rev. Mod. Phys., 27 (1955), 26–39.
- R. Wegscheider. Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme. Monatshefte für Chemie / Chemical Monthly, 32 (1911), 849–906.
- D.A. Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models. Springer, 2000.
- S. Wolfram. A new kind of science. Wolfram Media, Champaign, IL, 2002.
- W.F.K. Wynne-Jones, H. Eyring. The absolute rate of reactions in condensed phases. J. Chem. Phys., 3 (1935), 492–502.
- G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic models of catalytic reactions. Series “Comprehensive Chemical Kinetics", Vol. 32, Compton R.G. (ed.), Elsevier, Amsterdam, 1991.
- Y.B. Zeldovich. Proof of the uniqueness of the solution of the equations of the law of mass action. In: Selected Works of Yakov Borisovich Zeldovich; Volume 1, Ostriker, J.P., Ed. Princeton University Press, Princeton, NJ, USA, 1996; pp. 144–148.