Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model
Mathematical Modelling of Natural Phenomena (2012)
- Volume: 7, Issue: 3, page 99-116
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Allen. Modeling with Itô Stochastic Differential Equations. Springer, The Netherlands, 2007.
- L. J. S. Allen. An Introduction to Stochastic Processes with Applications to Biology. Pearson Eduction Inc., New Jercy, 2003.
- L. J. S. Allen, M. A. Jones, C. F. Martin. A discrete-time model with vaccination for a measles epidemic. Math. Biosci., 105 (1991), 111–131.
- O. Arino, A. El. Abdllaoui, J. Mikram, J. Chattopadhyay. Infection on prey population may act as a biological control in ratio-dependent predator-prey model. Nonlinearity, 17 (2004), 1101-1116.
- E. J. Allen, L. J. S. Allen, A. Arciniega, P. Greenwood. Construction of equivalent stochastic differential equation models. Stoch. Anal. Appl., 26 (2008) 274-297.
- F. G. Ball. Stochastic and deterministic models for SIS epidemics among a population partitioned into households. Math. Biosci., 156 (1999) 41–67.
- E. Beltrami, T. O. Carroll. Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol., 32 (1994) 857-863.
- F. Brauer, C. Castillo-Chàvez. Mathematical Models in Population Biolgy and Epidemiology Springer-Verlag, New York, 2001.
- T. Britton. Stochastic epidemic models : A survey. Math. Biosci., 225 (2010) 24–35.
- T. Britton, D. Lindenstrand. Epidemic modelling : Aspects where stochasticity matters. Math. Biosci., 222 (2009) 109-116.
- J. Chattopadhyay, N. Bairagi. Pelicans at risk in Salton Sea - an eco-epidemiological model. Ecol. Model., 136 (2001) 103–112.
- M. S. Chan, V. S. Isham. A stochastic model of schistosomiasis immuno-epidemiology. Math. Biosci., 151 (1998) 179–198.
- H. I. Freedman. A model of predator-prey dynamics as modified by the action of parasite. Math. Biosci., 99 (1990) 143–155.
- T. C. Gard. Introduction to Stochastic Differential Equations. Marcel Decker, New York, 1987.
- C. W. Gardiner. Handbook of Stochastic Methods. Springer-Verlag, New York, 1983.
- D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phy., 22 (1976) 403–434.
- D. T. Gillespie. The chemical Langevin equation. J. Chem. Phy., 113 (2000) 297–306.
- N. S. Goel, N. Richter-Dyn. Stochastic Models in Biology. Academic Press, New York, 1974.
- D. Greenhalgh, M. Griffiths. Backward bifurcation, equilibrium and stability phenomena in a three-stage extended BRSV epidemic model. J. Math. Biol., 59 (2009) 1–36.
- K. P. Hadeler, H. I. Freedman. Predator-prey population with parasitic infection. J. Math. Biol., 27 (1989) 609–631.
- M. Haque, D. Greenhalgh. A predator-prey model with disease in prey species only. M2AS, 30 (2006) 911–929.
- D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev., 43 (2001) 525–546.
- W. O. Kermack, A. G. McKendrick. A Contribution to the Mathematical Theory of Epidemics. Proc. Roy. Soc. Lond. A.115 (1927) 700–721.
- P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations. Springer, Berlin, 1999.
- M. Kot. Elements of Mathematical Biology. Cambridge University Press, Cambridge, 2001.
- Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, Berlin, 1997.
- A. J. Lotka. Elements of physical biology. Williams & Wilkins Co., Baltimore, 1925.
- J. Marsden, M. McCracken. The Hopf Bifurcation and its Applications. Springer, New York, 1976.
- H. Malchow, S. V. Petrovskii, E. Venturino. Spatiotemporal Patterns in Ecology and Epidemiology : Theory, Models and Simulations. Chapman & Hall, London, 2008.
- J. D. Murray. Mathematical Biology. Springer, New York, 1993.
- R. J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley & Sons, New York, 1980.
- D. Stiefs, E. Venturino, U. Feudel. Evidence of chaos in eco-epidemic models. Math. Biosci. Eng., 6 (2009) 857–873.
- R. K. Upadhyay, N. Bairagi, K. Kundu, J. Chattopadhyay. Chaos in eco-epidemiological problem of the Salton Sea and its possible control. Appl. Math. Comput., 196 (2008) 392–401.
- E. Venturino. The influence of diseases on Lotka-Volterra systems. Rocky Mountain Journal of Mathematics.24 (1994) 381–402.
- E. Venturino. Epidemics in predator-prey models : disease in the prey, In ‘Mathematical Population Dynamics, Analysis of Heterogeneity’. 1, O. Arino, D. Axelrod, M. Kimmel, M. Langlais (Eds), Wnertz Publisher Ltd, Canada, 381–393, 1995.
- V. Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. 2. Mem. R. Accad. Naz. dei Lincei. Ser. VI, 1926.