From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology

E. Domingo; C. Perales

Mathematical Modelling of Natural Phenomena (2012)

  • Volume: 7, Issue: 5, page 105-122
  • ISSN: 0973-5348

Abstract

top
RNA viruses replicate as complex and dynamic mutant distributions. They are termed viral quasispecies, in recognition of the fundamental contribution of quasispecies theory in our understanding of error-prone replicative entities. Viral quasispecies have launched a fertile field of transdiciplinary research, both experimental and theoretical. Here we review the origin and some implications of the quasispecies concept, with emphasis on internal interactions among components of the same mutant virus ensemble, a critical fact to design new antiviral strategies. We make the distinction between “intrinsic” and “extrinsic” properties of mutant distributions, and emphasize that there are several levels of complexity that can influence viral quasispecies behavior.

How to cite

top

Domingo, E., and Perales, C.. "From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology." Mathematical Modelling of Natural Phenomena 7.5 (2012): 105-122. <http://eudml.org/doc/222404>.

@article{Domingo2012,
abstract = {RNA viruses replicate as complex and dynamic mutant distributions. They are termed viral quasispecies, in recognition of the fundamental contribution of quasispecies theory in our understanding of error-prone replicative entities. Viral quasispecies have launched a fertile field of transdiciplinary research, both experimental and theoretical. Here we review the origin and some implications of the quasispecies concept, with emphasis on internal interactions among components of the same mutant virus ensemble, a critical fact to design new antiviral strategies. We make the distinction between “intrinsic” and “extrinsic” properties of mutant distributions, and emphasize that there are several levels of complexity that can influence viral quasispecies behavior.},
author = {Domingo, E., Perales, C.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {RNA viruses; viral quasispecies; mutation rate; viral fitness; lethal mutagenesis},
language = {eng},
month = {10},
number = {5},
pages = {105-122},
publisher = {EDP Sciences},
title = {From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology},
url = {http://eudml.org/doc/222404},
volume = {7},
year = {2012},
}

TY - JOUR
AU - Domingo, E.
AU - Perales, C.
TI - From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/10//
PB - EDP Sciences
VL - 7
IS - 5
SP - 105
EP - 122
AB - RNA viruses replicate as complex and dynamic mutant distributions. They are termed viral quasispecies, in recognition of the fundamental contribution of quasispecies theory in our understanding of error-prone replicative entities. Viral quasispecies have launched a fertile field of transdiciplinary research, both experimental and theoretical. Here we review the origin and some implications of the quasispecies concept, with emphasis on internal interactions among components of the same mutant virus ensemble, a critical fact to design new antiviral strategies. We make the distinction between “intrinsic” and “extrinsic” properties of mutant distributions, and emphasize that there are several levels of complexity that can influence viral quasispecies behavior.
LA - eng
KW - RNA viruses; viral quasispecies; mutation rate; viral fitness; lethal mutagenesis
UR - http://eudml.org/doc/222404
ER -

References

top
  1. V.I. Agol. Picornaviruses as a model for studying the nature of RNA recombination. In : The Picornaviruses. E. Ehrenfeld, E. Domingo and R.P. Roos, eds, ASM Press, Washington DC. pp. 239–252, 2010.  
  2. A. Airaksinen, N. Pariente, L. Menendez-Arias, E. Domingo. Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology, 311 (2003), 339–349.  
  3. R. Antia, R.R. Regoes, J.C. Koella, C.T. Bergstrom. The role of evolution in the emergence of infectious diseases. Nature, 426 (2003), 658–661.  
  4. A. Arias, R. Agudo, C. Ferrer-Orta, R. Perez-Luque, A. Airaksinen, E. Brocchi, E. Domingo, N. Verdaguer, C. Escarmis. Mutant viral polymerase in the transition of virus to error catastrophe identifies a critical site for RNA binding. J. Mol. Biol., 353 (2005), 1021–1032.  
  5. E. Batschelet, E. Domingo, C. Weissmann. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene, 1 (1976), 27–32.  
  6. A. Bernad, L. Blanco, J.M. Lazaro, G. Martin, M. Salas. A conserved 3’ 5’ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell, 59 (1989), 219–228.  
  7. C.K. Biebricher, M. Eigen. The error threshold. Virus Res., 107 (2005), 117–127.  
  8. B. Borrego, I.S. Novella, E. Giralt, D. Andreu, E. Domingo. Distinct repertoire of antigenic variants of foot-and-mouth disease virus in the presence or absence of immune selection. J. Virol., 67 (1993), 6071–6079.  
  9. M.J. Buzon, T. Wrin, F.M. Codoner, J. Dalmau, P. Phung, A. Bonjoch, E. Coakley, B. Clotet, J. Martinez-Picado. Combined antiretroviral therapy and immune pressure lead to in vivo HIV-1 recombination with ancestral viral genomes. Journal of acquired immune deficiency syndromes (1999), 57 (2011), 109–117.  
  10. M. Clementi. Perspectives and opportunities for novel antiviral treatments targeting virus fitness. Clin Microbiol Infect, 14 (2008), 629–631.  
  11. L.L. Coffey, Y. Beeharry, A.V. Borderia, H. Blanc, M. Vignuzzi. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A, 108 (2011), 16038–16043.  
  12. S. Crowder, K. Kirkegaard. Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nature Genetics, 37 (2005), 701–709.  
  13. K.M. Chumakov, L.B. Powers, K.E. Noonan, I.B. Roninson, I.S. Levenbook. Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine. Proc. Natl. Acad. Sci. USA, 88 (1991), 199–203.  
  14. J.C. de la Torre, J.J. Holland. RNA virus quasispecies populations can suppress vastly superior mutant progeny. J. Virol., 64 (1990), 6278–6281.  
  15. M.R. Denison, R.L. Graham, E.F. Donaldson, L.D. Eckerle, R.S. Baric. Coronaviruses : an RNA proofreading machine regulates replication fidelity and diversity. RNA biology, 8 (2011), 270–279.  
  16. E. Domingo. Mechanisms of viral emergence. Vet Res, 41 (2010), 38.  
  17. E. Domingo, C. Biebricher, M. Eigen, J.J. Holland. Quasispecies and RNA Virus Evolution : Principles and Consequences. Landes Bioscience, Austin, 2001.  
  18. E. Domingo, M. Davila, J. Ortin. Nucleotide sequence heterogeneity of the RNA from a natural population of foot-and-mouth-disease virus. Gene, 11 (1980), 333–346.  
  19. E. Domingo, R.A. Flavell, C. Weissmann. In vitro site-directed mutagenesis : generation and properties of an infectious extracistronic mutant of bacteriophage Q . Gene, 1 (1976), 3–25.  
  20. E. Domingo, J.J. Holland, P. Ahlquist. RNA Genetics, CRC Press, Boca Raton, 1988.  
  21. E. Domingo, D. Sabo, T. Taniguchi, C. Weissmann. Nucleotide sequence heterogeneity of an RNA phage population. Cell, 13 (1978), 735–744.  
  22. E. Domingo, J. Sheldon, C. Perales. Viral quasispecies evolution. Microbiology and Molecular Biology Reviews, 76 (2012), 159–216.  
  23. E. Domingo, S. Wain-Hobson. The 30th anniversary of quasispecies. Meeting on ’Quasispecies : past, present and future’. EMBO Rep, 10 (2009), 444–448.  
  24. J.W. Drake. Comparative rates of spontaneous mutation. Nature, 221 (1969), 1132.  
  25. J.W. Drake, J.J. Holland. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA, 96 (1999), 13910–13913.  
  26. E.A. Duarte, I.S. Novella, S. Ledesma, D.K. Clarke, A. Moya, S.F. Elena, E. Domingo, J.J. Holland. Subclonal components of consensus fitness in an RNA virus clone. J. Virol., 68 (1994), 4295–4301.  
  27. L.D. Eckerle, M.M. Becker, R.A. Halpin, K. Li, E. Venter, X. Lu, S. Scherbakova, R.L. Graham, R.S. Baric, T.B. Stockwell, D.J. Spiro, M.R. Denison. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog, 6 (2010), e1000896.  
  28. L.D. Eckerle, X. Lu, S.M. Sperry, L. Choi, M.R. Denison. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol, 81 (2007), 12135–12144.  
  29. M. Eigen. Natural selection : a phase transition? Biophys. Chem., 85 (2000), 101–123.  
  30. M. Eigen. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58 (1971), 465–523.  
  31. M. Eigen. Steps towards life, Oxford University Press, 1992.  
  32. M. Eigen, J. McCaskill, P. Schuster. Molecular quasi-species. J. Phys. Chem., 92 (1988), 6881–6891.  
  33. M. Eigen, P. Schuster. The hypercycle. A principle of natural self-organization. Springer, Berlin, 1979.  
  34. C. Escarmis, E. Lazaro, A. Arias, E. Domingo. Repeated bottleneck transfers can lead to non-cytocidal forms of a cytopathic virus : implications for viral extinction. J. Mol. Biol., 376 (2008), 367–379.  
  35. G. Feix, R. Pollet, C. Weissmann. Replication of viral RNA, XVI. Enzymatic synthesis of infectious viral RNA with noninfectious Q-beta minus strands as template. Proc Natl Acad Sci U S A, 59 (1968), 145–152.  
  36. C. Ferrer-Orta, R. Agudo, E. Domingo, N. Verdaguer. Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Current Opinion in Structural Biology, 19 (2009), 752–758.  
  37. C. Ferrer-Orta, A. Arias, R. Agudo, R. Perez-Luque, C. Escarmis, E. Domingo, N. Verdaguer. The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J, 25 (2006), 880–888.  
  38. R.A. Flavell, D.L. Sabo, E.F. Bandle, C. Weissmann. Site-directed mutagenesis : generation of an extracistronic mutation in bacteriophage Q beta RNA. J Mol Biol, 89 (1974), 255–272.  
  39. E.C. Friedberg, G.C. Walker, W. Siede, R.D. Wood, R.A. Schultz, T. Ellenberger. DNA repair and mutagenesis. American Society for Microbiology, Washington, DC, 2006.  
  40. M. Gell-Mann. Complex adaptive systems, in : G.A. Cowan, D. Pines, D. Meltzer (Eds.). Complexity. Metaphors, models and reality, Wesley Publishing Co., Reading, MA, 1994, pp. 17–45.  
  41. R.F. Gesteland, T.R. Cech, J.F. Atkins. The RNA World. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2006.  
  42. W. Gilbert. The RNA world. Nature, 319 (1986), 618.  
  43. C. Gonzalez-Lopez, A. Arias, N. Pariente, G. Gomez-Mariano, E. Domingo. Preextinction viral RNA can interfere with infectivity. J. Virol., 78 (2004), 3319–3324.  
  44. A. Grande-Perez, E. Lazaro, P. Lowenstein, E. Domingo, S.C. Manrubia. Suppression of viral infectivity through lethal defection. Proc. Natl. Acad. Sci. USA, 102 (2005), 4448–4452.  
  45. A. Grande-Perez, S. Sierra, M.G. Castro, E. Domingo, P.R. Lowenstein. Molecular indetermination in the transition to error catastrophe : systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc. Natl. Acad. Sci. USA, 99 (2002), 12938–12943.  
  46. B.L. Haagmans, A.C. Andeweg, A.D. Osterhaus. The application of genomics to emerging zoonotic viral diseases. PLoS Pathog, 5 (2009), e1000557.  
  47. G.Z. Han, M. Worobey. Homologous recombination in negative sense RNA viruses. Viruses, 3 (2011), 1358–1373.  
  48. J.J. Holland. Continuum of change in RNA virus genomes. In : A.L. Notkins, M.B.A. Oldstone (Eds.). Concepts in Viral Pathogenesis, Springer-Verlag, New York, 1984.  
  49. J.J. Holland. Genetic diversity of RNA viruses. Current Topics in Microbiology and Immunology, Springer-Verlag, Berlin, 1992.  
  50. J.J. Holland, E.A. Grabau, C.L. Jones, B.L. Semler. Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell, 16 (1979), 495–504.  
  51. J.J. Holland, K. Spindler, F. Horodyski, E. Grabau, S. Nichol, S. VandePol. Rapid evolution of RNA genomes. Science, 215 (1982), 1577–1585.  
  52. K. Horiuchi. Genetic studies of RNA phages, in : N.D. Zinder (Ed.) RNA Phages, Cold Spring Harbor laboratory, Cold Spring Harbor, New York, 1975, pp. 29–50.  
  53. J. Iranzo, S.C. Manrubia. Stochastic extinction of viral infectivity through the action of defectors. Europhys. Lett., 85 (2009), 18001.  
  54. J. Iranzo, C. Perales, E. Domingo, S.C. Manrubia. Tempo and mode of inhibitor-mutagen antiviral therapies : A multidisciplinary approach. Proc Natl Acad Sci U S A, 108 (2011), 16008–16013.  
  55. K.S. Kemal, C.M. Kitchen, H. Burger, B. Foley, D. Mayers, T. Klimkait, F. Hamy, K. Anastos, K. Petrovic, V.N. Minin, M.A. Suchard, B. Weiser. Recombination Between Variants from Genital Tract and Plasma : Evolution of Multidrug-Resistant HIV Type 1. AIDS research and human retroviruses, (2012), in press.  
  56. G.M. Li. Mechanisms and functions of DNA mismatch repair. Cell research, 18 (2008), 85–98.  
  57. T. Loeb, N.D. Zinder. A bacteriophage containing RNA. Proc Natl Acad Sci U S A, 47 (1961), 282–289.  
  58. R. Mateo, A. Diaz, E. Baranowski, M.G. Mateu. Complete alanine scanning of intersubunit interfaces in a foot-and-mouth disease virus capsid reveals critical contributions of many side chains to particle stability and viral function. J Biol Chem, 278 (2003), 41019–41027.  
  59. L. Menendez-Arias. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses, 1 (2009), 1137–1165.  
  60. A. Meyerhans, R. Cheynier, J. Albert, M. Seth, S. Kwok, J. Sninsky, L. Morfeldt-Manson, B. Asjo, S. Wain-Hobson. Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell, 58 (1989), 901–910.  
  61. D.R. Mills, R.L. Peterson, S. Spiegelman. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad. Sci. USA, 58 (1967), 217–224.  
  62. E. Minskaia, T. Hertzig, A.E. Gorbalenya, V. Campanacci, C. Cambillau, B. Canard, J. Ziebuhr. Discovery of an RNA virus 3’ −  > 5’ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA, 103 (2006), 5108–5113.  
  63. L. Moutouh, J. Corbeil, D.D. Richman. Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci U S A, 93 (1996), 6106–6111.  
  64. H. Naegeli. Mechanisms of DNA damage recognition in mammalian cells. Landes Bioscience, Austin, Texas, 1997.  
  65. M.A. Nowak, P. Schuster. Error thresholds of replication in finite populations mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol., 137 (1989), 375–395.  
  66. S. Ojosnegros, N. Beerenwinkel, T. Antal, M.A. Nowak, C. Escarmis, E. Domingo. Competition-colonization dynamics in an RNA virus. Proc Natl Acad Sci U S A, 107 (2010), 2108–2112.  
  67. K.M. Page, M.A. Nowak. Unifying evolutionary dynamics. J. Theor. Biol., 219 (2002), 93–98.  
  68. N. Pariente, A. Airaksinen, E. Domingo. Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J. Virol., 77 (2003), 7131–7138.  
  69. N. Pariente, S. Sierra, P.R. Lowenstein, E. Domingo. Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J. Virol., 75 (2001), 9723–9730.  
  70. C. Perales, R. Agudo, S.C. Manrubia, E. Domingo. Influence of mutagenesis and viral load on the sustained low-level replication of an RNA virus. J Mol Biol, 407 (2011), 60–78.  
  71. C. Perales, R. Agudo, H. Tejero, S.C. Manrubia, E. Domingo. Potential benefits of sequential inhibitor-mutagen treatments of RNA virus infections. PLoS Pathog, 5 (2009), e1000658.  
  72. C. Perales, M. Henry, E. Domingo, S. Wain-Hobson, J.P. Vartanian. Lethal mutagenesis of foot-and-mouth disease virus involves shifts in sequence space. J Virol, (2011), 12227–12240.  
  73. C. Perales, R. Lorenzo-Redondo, C. Lopez-Galandez, M.A. Martinez, E. Domingo. Mutant spectra in virus behavior. Future Virology, 5 (2010), 679–698.  
  74. C. Perales, R. Mateo, M.G. Mateu, E. Domingo. Insights into RNA virus mutant spectrum and lethal mutagenesis events : replicative interference and complementation by multiple point mutants. J. Mol. Biol., 369 (2007), 985–1000.  
  75. J.K. Pfeiffer, K. Kirkegaard. Increased fidelity reduces poliovirus fitness under selective pressure in mice. PLoS Pathogens, 1 (2005), 102–110.  
  76. M.E. Quinones-Mateu, E. Arts. Virus fitness : concept, quantification, and application to HIV population dynamics. Current Topics in Microbiol. and Immunol., 299 (2006), 83–140.  
  77. D.B. Saakian, C.K. Biebricher, C.K. Hu. Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape. Physical review, 79 (2009), 041905.  
  78. D.B. Saakian, E. Munoz, C.K. Hu, M.W. Deem. Quasispecies theory for multiple-peak fitness landscapes. Physical Review E, 73 (2006), 041913.  
  79. R. Sanjuan, M.R. Nebot, N. Chirico, L.M. Mansky, R. Belshaw. Viral mutation rates. J Virol, 84 (2010), 9733–9748.  
  80. D. Shriner, A.G. Rodrigo, D.C. Nickle, J.I. Mullins. Pervasive genomic recombination of HIV-1 in vivo. Genetics, 167 (2004), 1573–1583.  
  81. S. Sierra, M. Davila, P.R. Lowenstein, E. Domingo. Response of foot-and-mouth disease virus to increased mutagenesis. Influence of viral load and fitness in loss of infectivity. J. Virol., 74 (2000), 8316–8323.  
  82. P. Simmonds. Recombination in the Evolution of Picornaviruses. In : The Picornaviruses. E. Ehrenfeld, E. Domingo and R.P. Roos, eds, ASM Press, Washington, D.C. p.p. 229–238, 2010.  
  83. P. Simmonds, S. Midgley. Recombination in the genesis and evolution of hepatitis B virus genotypes. J Virol, 79 (2005), 15467–15476.  
  84. H.A. Simon. The Sciences of the Artificial (3rd edition). The MIT Press, Cambridge, Massachusetts, 1996.  
  85. F. Sobrino, M. Davila, J. Ortin, E. Domingo. Multiple genetic variants arise in the course of replication of foot-and-mouth disease virus in cell culture. Virology, 128 (1983), 310–318.  
  86. R. Solé, B. Goodwin. Signs of Life. How Complexity Pervades Biology. Basic Books, New York, 2000.  
  87. R. Sousa. Structural and mechanistic relationships between nucleic acid polymerases. Trends Biochem. Sci., 21 (1996), 186–190.  
  88. D.A. Steinhauer, E. Domingo, J.J. Holland. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene, 122 (1992), 281–288.  
  89. T.A. Steitz. DNA polymerases : structural diversity and common mechanisms. J. Biol. Chem., 274 (1999), 17395–17398.  
  90. J. Swetina, P. Schuster. Self-replication with errors. A model for polynucleotide replication. Biophys. Chem., 16 (1982), 329–345.  
  91. J. Sztuba-Solinska, A. Urbanowicz, M. Figlerowicz, J.J. Bujarski. RNA-RNA recombination in plant virus replication and evolution. Annual review of phytopathology, 49 (2011), 415–443.  
  92. M.N. Teng, M.B. Oldstone, J.C. de la Torre. Suppression of lymphocytic choriomeningitis virus-induced growth hormone deficiency syndrome by disease-negative virus variants. Virology, 223 (1996), 113–119.  
  93. R.C. Valentine, R. Ward, M. Strand. The replication cycle of RNA bacteriophages. Adv. Virus Res., 15 (1969), 1–59.  
  94. M. Vignuzzi, R. Andino. in : E. Ehrenfeld, E. Domingo, R.F. Roos (Eds.). The Picornaviruses. ASM Press, Washington DC, 2010, pp. 213–228.  
  95. M. Vignuzzi, J.K. Stone, J.J. Arnold, C.E. Cameron, R. Andino. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 439 (2006), 344–348.  
  96. C. Weissmann, M.A. Billeter, H.M. Goodman, J. Hindley, H. Weber. Structure and function of phage RNA. Annu Rev Biochem, 42 (1973), 303–328.  
  97. C. Weissmann, T. Tanaguchi, E. Domingo, D. Sabo, R.A. Flavell. Site-directed mutagenesis as a tool in genetics, in : J. Schultz, Z. Brada (Eds.). Genetic manipulation as it affects the cancer problem, Academic Press, New York, 1977, pp. 11–36.  
  98. C.O. Wilke, C. Ronnewinkel, T. Martinetz. Dynamic fitness landscapes in molecular evolution. Physics Reports, 349 (2001), 395–446.  Zbl1001.68191
  99. S. Wright. The roles of mutation, inbreeding, crossbreading, and selection in evolution. Proc. of the VI International Congress of Genetics, 1 (1932), 356–366.  
  100. M. Yarus. Life from an RNA world. The ancestor within. Harvard University Press, Cambridge, Massachusetts and London, England, 2010.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.