# The Banach contraction mapping principle and cohomology

Commentationes Mathematicae Universitatis Carolinae (2000)

- Volume: 41, Issue: 3, page 605-610
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topJanoš, Ludvík. "The Banach contraction mapping principle and cohomology." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 605-610. <http://eudml.org/doc/22513>.

@article{Janoš2000,

abstract = {By a dynamical system $(X,T)$ we mean the action of the semigroup $(\mathbb \{Z\}^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary.},

author = {Janoš, Ludvík},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {$B$-system; $E$-system},

language = {eng},

number = {3},

pages = {605-610},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {The Banach contraction mapping principle and cohomology},

url = {http://eudml.org/doc/22513},

volume = {41},

year = {2000},

}

TY - JOUR

AU - Janoš, Ludvík

TI - The Banach contraction mapping principle and cohomology

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2000

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 41

IS - 3

SP - 605

EP - 610

AB - By a dynamical system $(X,T)$ we mean the action of the semigroup $(\mathbb {Z}^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary.

LA - eng

KW - $B$-system; $E$-system

UR - http://eudml.org/doc/22513

ER -

## References

top- Edelstein M., On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79. (1962) Zbl0113.16503MR0133102
- Huissi M., Sur les solutions globales de l'equation des cocycles, Aequationes Math. 45 (1993), 195-206. (1993) MR1212385
- Iwanik A., Ergodicity for piecewise smooth cocycles over toral rotations, Fund. Math. 157 (1998), 235-244. (1998) MR1636890
- Janoš L., A converse of Banach's contraction theorem, Proc. Amer. Math. Soc. 18 (1967), 287-289. (1967) Zbl0148.43001MR0208589
- Janoš L., Ko H.M., Tau K.K., Edelstein's contractivity and attractors, Proc. Amer. Math. Soc. 76 (1979), 339-344. (1979) MR0537101
- Meyers P.R., A converse to Banach's contraction theorem, J. Res. Nat. Bureau of Standard 71B (1967), 73-76. (1967) Zbl0161.19803MR0221469
- Moore C., Schmidt K., Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443-475. (1980) MR0572015
- Nussbaum R., Some asymptotic fixed point theorem, Trans. Amer. Math. Soc. 171 (1972), 349-375. (1972) MR0310719
- Opoitsev V.J., A converse to the principle of contracting maps, Russian Math. Surveys 31 (1976), 175-204. (1976) Zbl0351.54025
- Parry W., Tuncel S., Classification Problems in Ergodic Theory, London Math. Soc. Lecture Note Series 67, Cambridge University Press, Cambridge, 1982. Zbl0487.28014MR0666871
- Rus I.A., Weakly Picard mappings, Comment. Math. Univ. Carolinae 34 (1993), 769-773. (1993) Zbl0787.54045MR1263804
- Volný D., Coboundaries over irrational rotations, Studia Math. 126 (1997), 253-271. (1997) MR1475922

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.