Semilinear elliptic problems with nonlinearities depending on the derivative
Commentationes Mathematicae Universitatis Carolinae (2003)
- Volume: 44, Issue: 3, page 413-426
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArcoya, David, and del Toro, Naira. "Semilinear elliptic problems with nonlinearities depending on the derivative." Commentationes Mathematicae Universitatis Carolinae 44.3 (2003): 413-426. <http://eudml.org/doc/249153>.
@article{Arcoya2003,
abstract = {We deal with the boundary value problem \[ \begin\{@align\}\{3\}2 -\Delta u(x) & = \lambda \_\{1\}u(x)+g(\nabla u(x))+h(x), \quad && x\in \Omega \ u(x) & = 0, && x\in \partial \Omega \end\{@align\}\]
where $\Omega \subset \mathbb \{R\}^N$ is an smooth bounded domain, $\lambda _\{1\}$ is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on $\Omega $, $h\in L^\{\max \lbrace 2,N/2\rbrace \}(\Omega )$ and $g:\mathbb \{R\}^N\longrightarrow \mathbb \{R\}$ is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that $g$ satisfies certain conditions on the origin and at infinity.},
author = {Arcoya, David, del Toro, Naira},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear boundary value problems; elliptic partial differential equations; bifurcation; resonace; nonlinear boundary value problem; elliptic partial differential equations; bifurcation; resonance},
language = {eng},
number = {3},
pages = {413-426},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Semilinear elliptic problems with nonlinearities depending on the derivative},
url = {http://eudml.org/doc/249153},
volume = {44},
year = {2003},
}
TY - JOUR
AU - Arcoya, David
AU - del Toro, Naira
TI - Semilinear elliptic problems with nonlinearities depending on the derivative
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 44
IS - 3
SP - 413
EP - 426
AB - We deal with the boundary value problem \[ \begin{@align}{3}2 -\Delta u(x) & = \lambda _{1}u(x)+g(\nabla u(x))+h(x), \quad && x\in \Omega \ u(x) & = 0, && x\in \partial \Omega \end{@align}\]
where $\Omega \subset \mathbb {R}^N$ is an smooth bounded domain, $\lambda _{1}$ is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions on $\Omega $, $h\in L^{\max \lbrace 2,N/2\rbrace }(\Omega )$ and $g:\mathbb {R}^N\longrightarrow \mathbb {R}$ is bounded and continuous. Bifurcation theory is used as the right framework to show the existence of solution provided that $g$ satisfies certain conditions on the origin and at infinity.
LA - eng
KW - nonlinear boundary value problems; elliptic partial differential equations; bifurcation; resonace; nonlinear boundary value problem; elliptic partial differential equations; bifurcation; resonance
UR - http://eudml.org/doc/249153
ER -
References
top- Ambrosetti A., Hess P., Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (2) (1980), 411-422. (1980) Zbl0433.35026MR0563992
- Almira J.M., Del Toro N., Some remarks on certains semilinear problems with nonlinearities depending on the derivative, Electron. J. Differential Equations 2003 (2003), 18 1-11. (2003)
- Anane A., Chakrone O., Gossez J.P., Spectre d'ordre supérieur et problèmes de non-résonance, C.R. Acad. Sci. Paris 325 Série I (1997), 33-36. (1997) Zbl0880.35083MR1461393
- Arcoya D., Gámez J.L., Bifurcation theory and related problems: anti-maximum principle and resonance, Comm. Partial Differential Equations 26 9-10 (2001), 1879-1911. (2001) Zbl1086.35010MR1865948
- Brezis H., Kato T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. IX, 58 (1979), 137-151. (1979) Zbl0408.35025MR0539217
- Ca nada A., Nonselfadjoint semilinear elliptic boundary value problems, Ann. Mat. Pura Appl. CXLVIII (1987), 237-250. (1987) MR0932766
- Ca nada A., Drábek P., On semilinear problems with nonlinearities depending only on derivatives SIAM J. Math. Anal., 27 (1996), 543-557. (1996) MR1377488
- Coifman R.R., Fefferman C.L., Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. (1974) Zbl0291.44007MR0358205
- Drábek P., Girg P., Roca F., Remarks on the range properties of certain semilinear problems of Landesman-Lazer type, J. Math. Anal. Appl. 257 (2001), 131-140. (2001) Zbl0993.34012MR1824670
- Drábek P., Nicolosi F., Semilinear boundary value problems at resonance with general nonlinearities, Differential Integral Equations 5 -2 (1992), 339-355. (1992) MR1148221
- De Figuereido D.G., Lions P.L., Nussbaum R.D., A priori estimates and existence of positive solutions for semi-linear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63. (1982) MR0664341
- Garofalo N., Lin F.H., Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. XL (1987), 347-366. Zbl0674.35007MR0882069
- Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. (1979) Zbl0425.35020MR0544879
- Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer, 1983. Zbl1042.35002MR0737190
- Girg P., Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative, Electron. J. Differential Equations 63 (2000), 1-28. (2000) Zbl0974.34018MR1799793
- Habets P., Sanchez L., A two-point problem with nonlinearity depending only on the derivative, SIAM J. Math. Anal. 28 (1997), 1205-1211. (1997) Zbl0886.34015MR1466677
- Kannan R., Nagle R.K., Pothoven K.L., Remarks on the existence of solutions of ; , Nonlinear Anal. 22 (1994), 793-796. (1994) Zbl0802.34021MR1270170
- Landesman E.M., Lazer A.C., Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. (1970) Zbl0193.39203MR0267269
- Leray J., Schauder J., Topologie et équations fonctionelles, Ann. Scient. Éc. Norm. Sup. 51 (1934), 45-78. (1934) MR1509338
- Mawhin J., Some remarks on semilinear problems at resonance where the nonlinearity depends only on the derivatives, Acta Math. Inform. Univ. Ostraviensis 2 (1994), 61-69. (1994) Zbl0853.34021MR1309064
- Mawhin J., Schmitt K., Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results Math. 14 (1988), 138-146. (1988) Zbl0780.35043MR0956010
- Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384
- Nagle R.K., Pothoven K., Singkofer K., Nonlinear elliptic equations at resonance where the nonlinearity depends essentially on the derivatives J. Diff. Equations, 38 (1980), 210-225. (1980) MR0597801
- Nussbaum R., Uniqueness and nonuniqueness for periodics solutions of , J. Differential Equations 34 (1979), 24-54. (1979) MR0549582
- Rabinowitz P.H., On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475. (1973) Zbl0272.35017MR0328705
- Struwe M., Variational Methods. Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1990. MR1078018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.