The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Semilinear elliptic problems with nonlinearities depending on the derivative”

Bifurcations for a problem with jumping nonlinearities

Lucie Kárná, Milan Kučera (2002)

Mathematica Bohemica

Similarity:

A bifurcation problem for the equation Δ u + λ u - α u + + β u - + g ( λ , u ) = 0 in a bounded domain in N with mixed boundary conditions, given nonnegative functions α , β L and a small perturbation g is considered. The existence of a global bifurcation between two given simple eigenvalues λ ( 1 ) , λ ( 2 ) of the Laplacian is proved under some assumptions about the supports of the functions α , β . These assumptions are given by the character of the eigenfunctions of the Laplacian corresponding to λ ( 1 ) , λ ( 2 ) .

Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions

Futoshi Takahashi (2014)

Mathematica Bohemica

Similarity:

We study the semilinear problem with the boundary reaction - Δ u + u = 0 in Ω , u ν = λ f ( u ) on Ω , where Ω N , N 2 , is a smooth bounded domain, f : [ 0 , ) ( 0 , ) is a smooth, strictly positive, convex, increasing function which is superlinear at , and λ > 0 is a parameter. It is known that there exists an extremal parameter λ * > 0 such that a classical minimal solution exists for λ < λ * , and there is no solution for λ > λ * . Moreover, there is a unique weak solution u * corresponding to the parameter λ = λ * . In this paper, we continue to study the spectral properties...