Simulation of an approximate optimal decomposition in breakpoints in approximating the function by a broken line
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1987)
- Volume: 26, Issue: 1, page 187-194
- ISSN: 0231-9721
Access Full Article
topHow to cite
topBeneš, Karel. "Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x^n$ by a broken line." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 26.1 (1987): 187-194. <http://eudml.org/doc/23461>.
@article{Beneš1987,
author = {Beneš, Karel},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {approximation of the power function by a broken line; increasing the accuracy; nonlinear problems; distribution in breakpoints; best uniform approximation},
language = {eng},
number = {1},
pages = {187-194},
publisher = {Palacký University Olomouc},
title = {Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x^n$ by a broken line},
url = {http://eudml.org/doc/23461},
volume = {26},
year = {1987},
}
TY - JOUR
AU - Beneš, Karel
TI - Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x^n$ by a broken line
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1987
PB - Palacký University Olomouc
VL - 26
IS - 1
SP - 187
EP - 194
LA - eng
KW - approximation of the power function by a broken line; increasing the accuracy; nonlinear problems; distribution in breakpoints; best uniform approximation
UR - http://eudml.org/doc/23461
ER -
References
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.