# Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f\left(x\right)={x}^{n}$ by a broken line

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1987)

- Volume: 26, Issue: 1, page 187-194
- ISSN: 0231-9721

## Access Full Article

top## How to cite

topBeneš, Karel. "Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x^n$ by a broken line." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 26.1 (1987): 187-194. <http://eudml.org/doc/23461>.

@article{Beneš1987,

author = {Beneš, Karel},

journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},

keywords = {approximation of the power function by a broken line; increasing the accuracy; nonlinear problems; distribution in breakpoints; best uniform approximation},

language = {eng},

number = {1},

pages = {187-194},

publisher = {Palacký University Olomouc},

title = {Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x^n$ by a broken line},

url = {http://eudml.org/doc/23461},

volume = {26},

year = {1987},

}

TY - JOUR

AU - Beneš, Karel

TI - Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x^n$ by a broken line

JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

PY - 1987

PB - Palacký University Olomouc

VL - 26

IS - 1

SP - 187

EP - 194

LA - eng

KW - approximation of the power function by a broken line; increasing the accuracy; nonlinear problems; distribution in breakpoints; best uniform approximation

UR - http://eudml.org/doc/23461

ER -

## References

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.