Polynomial structures with double roots

Alena Vanžurová

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1997)

  • Volume: 36, Issue: 1, page 187-196
  • ISSN: 0231-9721

How to cite

top

Vanžurová, Alena. "Polynomial structures with double roots." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 36.1 (1997): 187-196. <http://eudml.org/doc/23645>.

@article{Vanžurová1997,
author = {Vanžurová, Alena},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {almost tangent structure; -structure; almost product structure; integrability; polynomial structure},
language = {eng},
number = {1},
pages = {187-196},
publisher = {Palacký University Olomouc},
title = {Polynomial structures with double roots},
url = {http://eudml.org/doc/23645},
volume = {36},
year = {1997},
}

TY - JOUR
AU - Vanžurová, Alena
TI - Polynomial structures with double roots
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1997
PB - Palacký University Olomouc
VL - 36
IS - 1
SP - 187
EP - 196
LA - eng
KW - almost tangent structure; -structure; almost product structure; integrability; polynomial structure
UR - http://eudml.org/doc/23645
ER -

References

top
  1. Bureš J., Some algebraically related almost complex and almost tangent structures on differentiable manifolds, Coll. Math. Soc. J. Bolyai, 31 Diff. Geom. (Budapest) 1979, 119-124. (1979) Zbl0526.53036
  2. Bureš J., Vanžura J., Simultaneous integrability of an almost complex and almost tangent structure, Czech. Math. Jour. 32, 107 (1982), 556-581. (1982) Zbl0526.53037MR0682132
  3. Ishihara S., Normal structure f satisfying f3 -f = 0, Ködai Math. Sem. Rep. 18 1966, 36-47. (1966) Zbl0136.18302MR0210023
  4. Clark R. S., Goel D. S., On the geometry of an almost tangent manifold, Tensor N. S. 24 (1972), 243-252. (1972) Zbl0262.53029MR0326613
  5. Clark R. S., Goel D. S., Almost tangent manifolds of second order, Tohoku Math. Jour. 24 (1972), 79-92. (1972) Zbl0246.53036MR0317222
  6. Lehmann-Lejeune J., Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent, Ann. Inst. Fourier 16 (Grenoble), 2 1966, 329-387. (1966) Zbl0145.42103MR0212720
  7. Lehmann-Lejeune J., Sur l’intégrabilité de certaines G-structures, C. R. Acad. Sci Paris 258 1984, 32-35. (1984) Zbl0136.17901MR0162200
  8. Pham Mau Quam, Introduction à la géométrie des variétés différentiables, Dunod, Paris, 1968. (1968) 
  9. Vanžura J., Integrability conditions for polynomial structures, Ködai Math. Sem. Rep. 27 1976, 42-50. (1976) Zbl0326.53050MR0400106
  10. Vanžura J., Simultaneous integrability of an almost tangent structure and a distribution, Demonstratio Mathematica 19, 1 (1986), 359-370. (1986) Zbl0625.53037MR0895009
  11. Vanžurová A., Polynomial structures on manifolds, Ph.D. thesis, 1974. (1974) 
  12. Yano K., On a structure defined by a tensor field f of type (1,1) satisfying f3+f= 0, Tensor 14, 1963, 99-109. (1963) Zbl0122.40705MR0159296
  13. Walker A. G., Almost-product structures, Differential geometry, Proc. of Symp. in Pure Math. 3, 94-100. Zbl0103.38801MR0123993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.