Differential forms on manifolds with a polynomial structure

Alena Vanžurová

Mathematica Slovaca (1998)

  • Volume: 48, Issue: 5, page 527-533
  • ISSN: 0232-0525

How to cite

top

Vanžurová, Alena. "Differential forms on manifolds with a polynomial structure." Mathematica Slovaca 48.5 (1998): 527-533. <http://eudml.org/doc/32396>.

@article{Vanžurová1998,
author = {Vanžurová, Alena},
journal = {Mathematica Slovaca},
keywords = {manifold; complex differential form; polynomial structure},
language = {eng},
number = {5},
pages = {527-533},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Differential forms on manifolds with a polynomial structure},
url = {http://eudml.org/doc/32396},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Vanžurová, Alena
TI - Differential forms on manifolds with a polynomial structure
JO - Mathematica Slovaca
PY - 1998
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 48
IS - 5
SP - 527
EP - 533
LA - eng
KW - manifold; complex differential form; polynomial structure
UR - http://eudml.org/doc/32396
ER -

References

top
  1. CHERN S. S., Complex Manifolds, Izd. Inostr. Lit., Moskvа, 1961. (1961) Zbl0098.35201
  2. GOLDBERG S. L.-PETRIDIS N. C., Differentiable solutions of algebraic equations on manifolds, Kôdаi Mаth. Sem. Rep. 25 (1973), 111-128. (1973) Zbl0253.53034MR0315627
  3. GOLDBERG S. I.-YANO K., Polynomial structures on manifolds, Kôdаi Mаth. Sem. Rep. 22 (1970), 199-218. (1970) Zbl0194.52702MR0267478
  4. KOBAYSHI S., Foundations of Differential Geometry II, Intersc. Publ., New York-London-Sydney, 1969. (1969) 
  5. LEHMANN-LEJEUNE J., Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangentx, Ann. Inst. Fourier (Grenoble) 16 (1966), 329 387. (1966) MR0212720
  6. LEHMANN-LEJEUNE J., Sur ľintégrabilité de certaines G-structures, C. R. Acаd. Sci. Pаris Sér. I Mаth. 258 (1984), 32-35. (1984) 
  7. MIZNER R. I., Almost CR structures, f -structures, almost product structures and associated connections, Rocky Mountаin J. Mаth. 23 (1993), 1337-1359. (1993) Zbl0806.53030MR1256452
  8. PHAM MAU QUAM, Introduction à la géométrie des variétés différentiables, Dunod, Pаris, 1968. (1968) 
  9. VANŽURA J., Integrability conditions for polynomial structures, Kodаi Mаth. Sem. Rep. 27 (1976), 42-50. (1976) Zbl0326.53050MR0400106
  10. VANŽUROVÁ A., Polynomial structures with double roots, Actа Univ. Pаlаck. Olomouc . Fаc. Rerum Nаtur. Mаth. 36 (1997), 187-196. (1997) Zbl0958.53023MR1620557
  11. WALKER A. G., Almost-product structures, In: Differentiаl geometry. Proc. Sympos. Pure Mаth. 3, Amer. Mаth. Soc, Providence, RI, 1961, pp. 94-100. (1961) Zbl0103.38801MR0123993
  12. YANO K., On a structure defined by a tensor field f of type ( 1 , 1 ) satisfying f 3 + f = 0 , Tensor 14 (1963), 99-109. (1963) MR0159296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.