Lower bounds for the greatest prime factor of a x m + b y n

Yann Bugeaud

Acta Mathematica et Informatica Universitatis Ostraviensis (1998)

  • Volume: 06, Issue: 1, page 53-57
  • ISSN: 1804-1388

How to cite

top

Bugeaud, Yann. "Lower bounds for the greatest prime factor of $ax^m+by^n$." Acta Mathematica et Informatica Universitatis Ostraviensis 06.1 (1998): 53-57. <http://eudml.org/doc/23819>.

@article{Bugeaud1998,
author = {Bugeaud, Yann},
journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
keywords = {greatest prime factor; binary form},
language = {eng},
number = {1},
pages = {53-57},
publisher = {University of Ostrava},
title = {Lower bounds for the greatest prime factor of $ax^m+by^n$},
url = {http://eudml.org/doc/23819},
volume = {06},
year = {1998},
}

TY - JOUR
AU - Bugeaud, Yann
TI - Lower bounds for the greatest prime factor of $ax^m+by^n$
JO - Acta Mathematica et Informatica Universitatis Ostraviensis
PY - 1998
PB - University of Ostrava
VL - 06
IS - 1
SP - 53
EP - 57
LA - eng
KW - greatest prime factor; binary form
UR - http://eudml.org/doc/23819
ER -

References

top
  1. G. D. Birkhoff, H. S. Vandiver, 10.2307/2007263, Ann. Math. 5 (1904), 173-180. (1904) MR1503541DOI10.2307/2007263
  2. Y. Bugeaud, 10.1023/A:1000130114331, Compositio Math. 107 (1997), 187-219. (1997) Zbl0886.11016MR1458749DOI10.1023/A:1000130114331
  3. Y. Bugeaud, On the greatest prime factor of a x m + b y n , In : Number Theory (ed. by K. Gyory, A. Peto and V. T. Sos), Walter de Gruyter, Berlin - New York (1998), 115-122. (1998) MR1628837
  4. Y. Bugeaud, 10.1016/S0764-4442(98)80026-8, C. R. Acad. Sci. Paris 326 (1998), 661-665. (1998) MR1641722DOI10.1016/S0764-4442(98)80026-8
  5. Y. Bugeaud, K. Gyory, Bounds for the solutions of unit equations, Acta Arith. 74 (1996), 67-80. (1996) MR1367579
  6. Y. Bugeaud, K. Gyory, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273-292. (1996) MR1373714
  7. K. Gyory, On the greatest prime factors of decomposable forms at integer points, Ann. Acad. Sci. Fenn. Ser. A1 4 (1979), 341-355. (1979) MR0565882
  8. K. Gyory P. Kiss, A. Schinzel, A note on Lucas and Lehmer sequences, Colloq. Math. 45 (1981), 75-80. (1981) MR0652603
  9. K. Gyory, A. Sarkozy, On prime factors of integers of the form ( a b + 1 ) ( b c + 1 ) ( c a + 1 ) , Acta Arith. 79 (1997), 163-171. (1997) MR1438599
  10. S. V. Kotov, Ueber die maximale Norm der Idealteiler des Polynoms a x m + b y n mit den algebraischen Koeffizienten, Acta Arith. 31 (1976), 219-230. (1976) MR0427226
  11. K. Mahler, On the greatest prime factor of a x m + b y n , Nieuw Archief voor Wisk. 3 (1953), 113-132. (1953) MR0057899
  12. T. N. Shorey, On the greatest prime factor of ( a x m + b y n ) , Acta Arith. 36 (1980), 21-25. (1980) MR0576580
  13. T. N. Shorey A. J. van der Poorten R. Tijdeman, A. Schinzel, Applications of the Gelfond-Baker method to diophantine equations, Advances in transcendence theory, Academic Press, London and New-York 1977. (1977) 
  14. T. N. Shorey, R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge, 1986. (1986) Zbl0606.10011MR0891406
  15. P. Voutier, 10.1017/S0305004197002223, Math. Proc. Cambridge Phil. Soc. 123 (1998), 407-419. (1998) MR1607969DOI10.1017/S0305004197002223
  16. K. Yu, L. Hung, 10.1016/0019-3577(95)93201-K, Indag. Math. N. S. 6 (1995), 341-354. (1995) Zbl0853.11014MR1351152DOI10.1016/0019-3577(95)93201-K
  17. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 256-284. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.