17 necessary and sufficient conditions for the primality of Fermat numbers
Acta Mathematica et Informatica Universitatis Ostraviensis (2003)
- Volume: 11, Issue: 1, page 73-79
- ISSN: 1804-1388
Access Full Article
topHow to cite
topKřížek, Michal, and Somer, Lawrence. "17 necessary and sufficient conditions for the primality of Fermat numbers." Acta Mathematica et Informatica Universitatis Ostraviensis 11.1 (2003): 73-79. <http://eudml.org/doc/23873>.
@article{Křížek2003,
author = {Křížek, Michal, Somer, Lawrence},
journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
language = {eng},
number = {1},
pages = {73-79},
publisher = {University of Ostrava},
title = {17 necessary and sufficient conditions for the primality of Fermat numbers},
url = {http://eudml.org/doc/23873},
volume = {11},
year = {2003},
}
TY - JOUR
AU - Křížek, Michal
AU - Somer, Lawrence
TI - 17 necessary and sufficient conditions for the primality of Fermat numbers
JO - Acta Mathematica et Informatica Universitatis Ostraviensis
PY - 2003
PB - University of Ostrava
VL - 11
IS - 1
SP - 73
EP - 79
LA - eng
UR - http://eudml.org/doc/23873
ER -
References
top- Btermann K.-R., Thomas Clausen, Mathematiker und Astronom, J. Reine Angew. Math. 216, 1964, 159-198. (1964) MR0164862
- Crandall R. E., Mayer E., Papadopoulos J., The twenty-fourth Fermat number is composite, Math. Comp., accepted, 1999, 1-21. (1999)
- Gauss C. P., Disquisitiones arithmeticae, Springer, Berlin 1986. (1986) Zbl0585.10001MR0837656
- Inkeri K., Tests for primality, Ann. Acad. Sci. Fenn. Ser. A I No. 279 1960, 1-19. (1960) Zbl0092.27506MR0117202
- Jones R,, Pearce J., 10.2307/2691078, Math. Mag. 73, 2000, 83-97. MR1822751DOI10.2307/2691078
- Křížek M., Chleboun J., A note on factorization of the Fermat numbers and their factors of the form , Math. Bohem. 119, 1994, 437-445. (1994) MR1316595
- Křížek M., Luca F., Somer L., 17 lectures on the Fermat numbers. From number theory to geometry, Springer-Verlag, New York 2001. MR1866957
- Křížek M., Somer L., A necessary and sufficient condition for the primality of Fermat numbers, Math. Bohem. 126, 2001, 541-549. MR1970256
- Luca F., Fermat numbers and Heron triangles with prime power sides, Amer. Math. Monthly, accepted in 2000.
- Lucas E., Theoremes d'arithmétique, Atti della Reale Accademia delle Scienze di Torino 13, 1878, 271-284.
- Mcintosh R., 10.2307/2975806, Amer. Math. Monthly 90, 1983, 98-99. (1983) Zbl0513.10012MR0691180DOI10.2307/2975806
- Morehead J. C., 10.1090/S0002-9904-1905-01255-6, Bull. Amer. Math. Soc. 11, 1905, 543-545. (1905) MR1558255DOI10.1090/S0002-9904-1905-01255-6
- Pepin P., Sur la formule , C. R. Acad. Sci. 85, 1877, 329-331.
- Somer L., Křížek M., On a connection of number theory with graph theory, Czechoslovak Math. J. (submitted) MR2059267
- Szalay L., A discrete iteration in number theory, (Hungarian), BDTF Tud, Kozi. VIII. Termeszettudomanyok 3., Szombathely, 1992, 71-91. (1992) Zbl0801.11011
- Vasilenko O. N., On some properties of Fermat numbers, (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 5 1998, 56-58. (1998) Zbl1061.11500MR1708238
- Wantzel P. L., Recherches sur les moyens de reconnaitre si un Probleme de Geometrie peut se resoudre avec la regie et le compas, J. Math. 2, 1837, 366-372.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.