A necessary and sufficient condition for the primality of Fermat numbers
Mathematica Bohemica (2001)
- Volume: 126, Issue: 3, page 541-549
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKřížek, Michal, and Somer, Lawrence. "A necessary and sufficient condition for the primality of Fermat numbers." Mathematica Bohemica 126.3 (2001): 541-549. <http://eudml.org/doc/248886>.
@article{Křížek2001,
abstract = {We examine primitive roots modulo the Fermat number $F_m=2^\{2^m\}+1$. We show that an odd integer $n\ge 3$ is a Fermat prime if and only if the set of primitive roots modulo $n$ is equal to the set of quadratic non-residues modulo $n$. This result is extended to primitive roots modulo twice a Fermat number.},
author = {Křížek, Michal, Somer, Lawrence},
journal = {Mathematica Bohemica},
keywords = {Fermat numbers; primitive roots; primality; Sophie Germain primes; Fermat numbers; primitive roots; primality; Sophie Germain primes},
language = {eng},
number = {3},
pages = {541-549},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A necessary and sufficient condition for the primality of Fermat numbers},
url = {http://eudml.org/doc/248886},
volume = {126},
year = {2001},
}
TY - JOUR
AU - Křížek, Michal
AU - Somer, Lawrence
TI - A necessary and sufficient condition for the primality of Fermat numbers
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 3
SP - 541
EP - 549
AB - We examine primitive roots modulo the Fermat number $F_m=2^{2^m}+1$. We show that an odd integer $n\ge 3$ is a Fermat prime if and only if the set of primitive roots modulo $n$ is equal to the set of quadratic non-residues modulo $n$. This result is extended to primitive roots modulo twice a Fermat number.
LA - eng
KW - Fermat numbers; primitive roots; primality; Sophie Germain primes; Fermat numbers; primitive roots; primality; Sophie Germain primes
UR - http://eudml.org/doc/248886
ER -
References
top- Elementary Number Theory, fourth edition, McGraw-Hill, New York, 1998. (1998)
- The twenty-fourth Fermat number is composite, Math. Comp. (submitted).
- A note on factorization of the Fermat numbers and their factors of the form , Math. Bohem. 119 (1994), 437–445. (1994) MR1316595
- 17 Lectures on Fermat Numbers. From Number Theory to Geometry, Springer, New York, 2001. (2001) MR1866957
- On the equation , Math. Bohem. 125 (2000), 465–479. (2000) Zbl1014.11024MR1802295
- An Introduction to the Theory of Numbers, fifth edition, John Wiley and Sons, New York, 1991. (1991) MR1083765
- A discrete iteration in number theory, BDTF Tud. Közl. VIII. Természettudományok 3., Szombathely (1992), 71–91. (Hungarian) (1992) Zbl0801.11011
- Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas, J. Math. 2 (1837), 366–372. (1837)
Citations in EuDML Documents
top- Lawrence Somer, Michal Křížek, On a connection of number theory with graph theory
- Michal Křížek, Lawrence Somer, Sophie Germain little suns
- S. Gun, B. Ramakrishnan, Binod Kumar Sahoo, Ravindranathan Thangadurai, Distribution of quadratic non-residues which are not primitive roots
- Michal Křížek, Lawrence Somer, 17 necessary and sufficient conditions for the primality of Fermat numbers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.