Formal extension of the Whitney functor and duality

Ana Rita Martins; Teresa Monteiro Fernandes

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 126, page 127-149
  • ISSN: 0041-8994

How to cite

top

Martins, Ana Rita, and Monteiro Fernandes, Teresa. "Formal extension of the Whitney functor and duality." Rendiconti del Seminario Matematico della Università di Padova 126 (2011): 127-149. <http://eudml.org/doc/239218>.

@article{Martins2011,
author = {Martins, Ana Rita, Monteiro Fernandes, Teresa},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Whitney functor; tempered distributions; tempered holomorphic functions},
language = {eng},
pages = {127-149},
publisher = {Seminario Matematico of the University of Padua},
title = {Formal extension of the Whitney functor and duality},
url = {http://eudml.org/doc/239218},
volume = {126},
year = {2011},
}

TY - JOUR
AU - Martins, Ana Rita
AU - Monteiro Fernandes, Teresa
TI - Formal extension of the Whitney functor and duality
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 126
SP - 127
EP - 149
LA - eng
KW - Whitney functor; tempered distributions; tempered holomorphic functions
UR - http://eudml.org/doc/239218
ER -

References

top
  1. [1] A. D'Agnolo - S. Guillermou - P. Schapira, Regular holonomic [ [ ] ] -modules, Publ. RIMS, Kyoto Univ., 47 (2011), pp. 221–255. Zbl1223.32008MR2827727
  2. [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, (1955). Zbl0064.35501MR75539
  3. [3] M. Kashiwara, D-modules and microlocal Calculus, Translations of Mathematical Monographs, AMS, 217, (2003). Zbl1017.32012MR1943036
  4. [4] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., 20 (1984), pp. 319–365. Zbl0566.32023MR743382
  5. [5] M. Kashiwara - P. Schapira, Ind-Sheaves, Astérisque, Soc. Math. France, 271, (2001). Zbl0993.32009MR1827714
  6. [6] M. Kashiwara - P. Schapira, Sheaves on manifolds, grundlehren der Math. Wiss., 292 (Springer-Verlag, 1990). Zbl0709.18001MR1074006
  7. [7] M. Kashiwara - P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mem. Soc. Math. France, 64, (1996). Zbl0881.58060MR1421293
  8. [8] M. Kashiwara - P. Schapira, Deformation quantization modules, Astérisque, Soc. Math. France (2012), arXiv:1003.3304. Zbl1260.32001MR794557
  9. [9] L. Prelli, Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova, 120 (2008). Zbl1171.32002MR2492657
  10. [10] D. Raimundo, Elliptic pairs over [ [ ] ] , submitted, arxiv:1003.4873.. 
  11. [11] L. Schwartz, Espaces Nucléaires. Propriétés de permanence et exemples, Séminaire Schwartz, 1, exp. 18 (1953-1954), pp. 1–5. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.