Regularity for elliptic pairs over [ [ ]

David Raimundo

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 130, page 107-126
  • ISSN: 0041-8994

How to cite

top

Raimundo, David. "Regularity for elliptic pairs over $ \mathbb {C}[[] $." Rendiconti del Seminario Matematico della Università di Padova 130 (2013): 107-126. <http://eudml.org/doc/275138>.

@article{Raimundo2013,
author = {Raimundo, David},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {modules over the ring of formal differential operators; finiteness and duality properties},
language = {eng},
pages = {107-126},
publisher = {Seminario Matematico of the University of Padua},
title = {Regularity for elliptic pairs over $ \mathbb \{C\}[[] $},
url = {http://eudml.org/doc/275138},
volume = {130},
year = {2013},
}

TY - JOUR
AU - Raimundo, David
TI - Regularity for elliptic pairs over $ \mathbb {C}[[] $
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 130
SP - 107
EP - 126
LA - eng
KW - modules over the ring of formal differential operators; finiteness and duality properties
UR - http://eudml.org/doc/275138
ER -

References

top
  1. [1] A. D'Agnolo - S. Guillermou - P. Schapira, Regular holonomic [ [ ] -modules, Publ. RIMS, Kyoto Univ. 47 no. 1, (2011), pp. 221–255. MR2827727
  2. [2] M. Kashiwara, Systems of microdifferential equations, Progress in Mathematics, 34, Birkhäuser (1983). Zbl0521.58057MR725502
  3. [3] M. Kashiwara, The Riemman-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ. 20 (1984), pp. 319–365. Zbl0566.32023MR743382
  4. [4] M. Kashiwara, -modules and Microlocal Calculus, Translations of Mathematical Monographs, 217 American Math. Soc. (2003). MR1943036
  5. [5] M. Kashiwara - P. Schapira, Sheaves On Manifolds, Grundlehren der Math. Wiss. 292 Springer-Verlag (1990). Zbl0709.18001MR1074006
  6. [6] M. Kashiwara - P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mem. Soc. Math. France 64 (1996). MR1421293
  7. [7] M. Kashiwara - P. Schapira, Deformation Quantization Modules, Astérisque, Soc. Math. France, 345 (2012). Zbl1260.32001MR3012169
  8. [8] A. R. Martins - T. Monteiro Fernandes, Formal extension of the Whitney functor and duality, Rendiconti del Seminario Matematico della Università di Padova, 126 (2011). Zbl1235.32007MR2918203
  9. [9] A. R. Martins - T. Monteiro Fernandes - D. Raimundo, Extension of functors for algebras of formal deformation, to appear in Glasgow Mathematical Journal. Zbl1282.32006MR3137854
  10. [10] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les X -modules cohérents, Travaux em Cours, 35, Hermann (1989). Zbl0686.14020MR1008245
  11. [11] P. Schapira, Microdifferential systems in the complex domain, Grundlehren der mathematischen Wissenschaften, 269, Springer, (1985). MR774228
  12. [12] P. Schapira - J-P. Schneiders, Elliptic pairs I: relative finiteness and duality, Astérisque, Soc. Math. France, 224 (1994). Zbl0856.58038MR1305642

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.