Regularity for elliptic pairs over
Rendiconti del Seminario Matematico della Università di Padova (2013)
- Volume: 130, page 107-126
- ISSN: 0041-8994
Access Full Article
topHow to cite
topRaimundo, David. "Regularity for elliptic pairs over $ \mathbb {C}[[] $." Rendiconti del Seminario Matematico della Università di Padova 130 (2013): 107-126. <http://eudml.org/doc/275138>.
@article{Raimundo2013,
author = {Raimundo, David},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {modules over the ring of formal differential operators; finiteness and duality properties},
language = {eng},
pages = {107-126},
publisher = {Seminario Matematico of the University of Padua},
title = {Regularity for elliptic pairs over $ \mathbb \{C\}[[] $},
url = {http://eudml.org/doc/275138},
volume = {130},
year = {2013},
}
TY - JOUR
AU - Raimundo, David
TI - Regularity for elliptic pairs over $ \mathbb {C}[[] $
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 130
SP - 107
EP - 126
LA - eng
KW - modules over the ring of formal differential operators; finiteness and duality properties
UR - http://eudml.org/doc/275138
ER -
References
top- [1] A. D'Agnolo - S. Guillermou - P. Schapira, Regular holonomic -modules, Publ. RIMS, Kyoto Univ. 47 no. 1, (2011), pp. 221–255. MR2827727
- [2] M. Kashiwara, Systems of microdifferential equations, Progress in Mathematics, 34, Birkhäuser (1983). Zbl0521.58057MR725502
- [3] M. Kashiwara, The Riemman-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ. 20 (1984), pp. 319–365. Zbl0566.32023MR743382
- [4] M. Kashiwara, -modules and Microlocal Calculus, Translations of Mathematical Monographs, 217 American Math. Soc. (2003). MR1943036
- [5] M. Kashiwara - P. Schapira, Sheaves On Manifolds, Grundlehren der Math. Wiss. 292 Springer-Verlag (1990). Zbl0709.18001MR1074006
- [6] M. Kashiwara - P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mem. Soc. Math. France 64 (1996). MR1421293
- [7] M. Kashiwara - P. Schapira, Deformation Quantization Modules, Astérisque, Soc. Math. France, 345 (2012). Zbl1260.32001MR3012169
- [8] A. R. Martins - T. Monteiro Fernandes, Formal extension of the Whitney functor and duality, Rendiconti del Seminario Matematico della Università di Padova, 126 (2011). Zbl1235.32007MR2918203
- [9] A. R. Martins - T. Monteiro Fernandes - D. Raimundo, Extension of functors for algebras of formal deformation, to appear in Glasgow Mathematical Journal. Zbl1282.32006MR3137854
- [10] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les -modules cohérents, Travaux em Cours, 35, Hermann (1989). Zbl0686.14020MR1008245
- [11] P. Schapira, Microdifferential systems in the complex domain, Grundlehren der mathematischen Wissenschaften, 269, Springer, (1985). MR774228
- [12] P. Schapira - J-P. Schneiders, Elliptic pairs I: relative finiteness and duality, Astérisque, Soc. Math. France, 224 (1994). Zbl0856.58038MR1305642
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.