Second-order asymptotic expansion for a non-synchronous covariation estimator
Arnak Dalalyan; Nakahiro Yoshida
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 3, page 748-789
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDalalyan, Arnak, and Yoshida, Nakahiro. "Second-order asymptotic expansion for a non-synchronous covariation estimator." Annales de l'I.H.P. Probabilités et statistiques 47.3 (2011): 748-789. <http://eudml.org/doc/239624>.
@article{Dalalyan2011,
abstract = {In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition of the estimator’s distribution in the gaussian set-up, a stochastic decomposition of the estimator itself and an accurate evaluation of the Malliavin covariance. To give a concrete example, we compute the constants involved in the resulting expansions for the particular case of sampling scheme generated by two independent Poisson processes.},
author = {Dalalyan, Arnak, Yoshida, Nakahiro},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {edgeworth expansion; covariation estimation; diffusion process; asynchronous observations; Poisson sampling; Edgeworth expansion},
language = {eng},
number = {3},
pages = {748-789},
publisher = {Gauthier-Villars},
title = {Second-order asymptotic expansion for a non-synchronous covariation estimator},
url = {http://eudml.org/doc/239624},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Dalalyan, Arnak
AU - Yoshida, Nakahiro
TI - Second-order asymptotic expansion for a non-synchronous covariation estimator
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 3
SP - 748
EP - 789
AB - In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition of the estimator’s distribution in the gaussian set-up, a stochastic decomposition of the estimator itself and an accurate evaluation of the Malliavin covariance. To give a concrete example, we compute the constants involved in the resulting expansions for the particular case of sampling scheme generated by two independent Poisson processes.
LA - eng
KW - edgeworth expansion; covariation estimation; diffusion process; asynchronous observations; Poisson sampling; Edgeworth expansion
UR - http://eudml.org/doc/239624
ER -
References
top- [1] T. G. Andersen and T. Bollerslev. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. Int. Econ. Rev. 39 (1998) 885–905.
- [2] T. G. Andersen, T. Bollerslev, F. X. Diebold and H. Ebens. The distribution of realized stock return volatility. J. Fin. Econ. 61 (2001) 43–76.
- [3] T. G. Andersen, T. Bollerslev, F. X. Diebold and P. Labys. The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc. 96 (2001) 42–55. Zbl1015.62107MR1952727
- [4] G. J. Babu and K. Singh. On one term Edgeworth correction by Efron’s bootstrap. Sankhyā A 46 (1984) 219–232. Zbl0568.62019MR778872
- [5] O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde and N. Shephard. Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. Manuscript. Available at http://www.nuffield.ox.ac.uk/economics/papers/index2007and2008.aspx.
- [6] O. E. Barndorff-Nielsen and N. Shephard. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 (2002) 253–280. Zbl1059.62107MR1904704
- [7] P. Bertail and S. Clémencon. Edgeworth expansions of suitably normalized sample mean statistics for atomic Markov chains. Probab. Theory Related Fields 130 (2004) 388–414. Zbl1075.62075MR2095936
- [8] A. Bose. Edgeworth correction by bootstrap in autoregressions. Ann. Statist. 16 (1988) 1709–1722. Zbl0653.62016MR964948
- [9] F. Comte and E. Renault. Long memory in continuous-time stochastic volatility models. Math. Finance 8 (1998) 291–323. Zbl1020.91021MR1645101
- [10] D. Dacunha-Castelle and D. Florens-Zmirou. Estimation of the coefficients of diffusion from discrete observations. Stochastics 19 (1986) 263–284. Zbl0626.62085MR872464
- [11] T. Epps. Comovements in stock prices in the very short run. J. Amer. Statist. Assoc. 74 (1979) 291–298.
- [12] D. Florens-Zmirou. On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30 (1993) 790–804. Zbl0796.62070MR1242012
- [13] M. Fukasawa. Edgeworth expansion for ergodic diffusions. Probab. Theory Related Fields 142 (2008) 1–20. Zbl1154.60018MR2413265
- [14] V. Genon-Catalot and J. Jacod. On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré 29 (1993) 119–151. Zbl0770.62070MR1204521
- [15] J. E. Griffin and R. C. A. Oomen. Covariance measurement in the presence of non-synchronous trading and market microstructure noise. Preprint, 2006. Available at http://ssrn.com/abstract=912541. MR2745867
- [16] P. Hall. The Bootstrap and Edgeworth Expansion. Springer, New York, 1992. Zbl0744.62026MR1145237
- [17] T. Hayashi and S. Kusuoka. Consistent estimation of covariation under non-synchronicity. Stat. Inference Stoch. Process. 11 (2008) 93–106. Zbl1148.62070MR2357555
- [18] T. Hayashi and N. Yoshida. On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11 (2005) 359–379. Zbl1064.62091MR2132731
- [19] T. Hayashi and N. Yoshida. Nonsynchronous covariance estimator and limit theorem. Preprint, 2006.
- [20] T. Hayashi and N. Yoshida. Asymptotic normality of a covariance estimator for non-synchronously observed diffusion processes. Ann. Inst. Statist. Math. 60 (2008) 367–406. Zbl1332.62284MR2403524
- [21] T. Hayashi and N. Yoshida. Nonsynchronous covariance estimator and limit theorem II. Preprint, 2008. MR2403524
- [22] T. Hoshikawa, T. Kanatani, K. Nagai and Y. Nishiyama. Nonparametric estimation methods of integrated multivariate volatilities. Working paper, 2006. Zbl05368899
- [23] J. Jacod. On processes with conditional independent increments and stable convergence in law. Semin. Probab. Strasbourg 36 (2002) 383–401. Zbl1034.60035MR1971599
- [24] H. Koul and D. Surgailis. Asymptotic expansion of M-estimators with long-memory errors. Ann. Statist. 25 (1997) 818–850. Zbl0885.62101MR1439325
- [25] M. Kessler. Estimation of diffusion processes from discrete observations. Scand. J. Statist. 24 (1997) 211–229. Zbl0879.60058MR1455868
- [26] A. W. Lo and A. C. MacKinlay. An econometric analysis of non-synchronous trading. J. Econometrics 45 (1990) 181–211. Zbl0712.62102MR1067232
- [27] P. Malliavin and M. E. Mancino. Fourier series method for measurement of multivariate volatilities. Finance Stoch. 6 (2002) 49–61. Zbl1008.62091MR1885583
- [28] P. A. Mykland. Asymptotic expansions for martingales. Ann. Probab. 21 (1993) 800–818. Zbl0776.60047MR1217566
- [29] P. A. Mykland. A Gaussian calculus for inference from high frequency data. Technical Report 563, Dept. Statistics, Univ. Chicago. Zbl1298.91196
- [30] P. A. Mykland and L. Zhang. Anova for diffusions and Ito processes. Ann. Statist. 34 (2006) 1931–1963. Zbl1246.91110MR2283722
- [31] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Springer, Berlin, 2006. Zbl0837.60050MR2200233
- [32] A. Palandri. Consistent realized covariance for asynchronous observations contaminated by market microstructure noise. Manuscript. Available at http://www.palandri.eu/research.html.
- [33] B. L. S. Prakasa-Rao. Asymptotic theory for non-linear least square estimator for diffusion processes. Math. Oper. Statist. Ser. Stat. 14 (1983) 195–209. Zbl0532.62060MR704787
- [34] B. L. S. Prakasa-Rao. Statistical inference from sampled data for stochastic processes. Contemp. Math. 80 (1988) 249–284. Zbl0687.62069MR999016
- [35] C. Robert and M. Rosenbaum. Ultra high frequency volatility and co-volatility estimation in a microstructure model with uncertainty zones. Submitted.
- [36] Y. Sakamoto and N. Yoshida. Asymptotic expansion under degeneracy. J. Japan Stat. Soc. 33 (2003) 145–156. Zbl1063.62115MR2039891
- [37] J. Shanken. Nonsynchronous data and the covariance-factor structure of returns. J. Finance 42 (1987) 221–231.
- [38] A. N. Shiryaev. Probability, 2nd edition. Graduate Texts in Mathematics 95. Springer, New York, 1996. Zbl0835.60002MR1368405
- [39] M. Scholes and J. Williams. Estimating betas from non-synchronous data. J. Fin. Econ. 5 (1977) 309–328.
- [40] T. J. Sweeting. Speeds of convergence for the multidimensional central limit theorem. Ann. Probab. 5 (1977) 28–41. Zbl0362.60041MR428400
- [41] V. Voev and A. Lunde. Integrated covariance estimation using high-frequency data in the presence of noise. Working paper. Presented at CIREQ Conference on Realized Volatility, 2006.
- [42] N. Yoshida. Estimation for diffusion processes from discrete observation. J. Multivariate Anal. 41 (1992) 220–242. Zbl0811.62083MR1172898
- [43] N. Yoshida. Malliavin calculus and asymptotic expansion for martingales. Probab. Theory Related Fields 109 (1997) 301–342. Zbl0888.60020MR1481124
- [44] L. Zhang. Estimating covariation: Epps effect, microstructure noise. J. Econometrics (2010). To appear. MR2745865
- [45] L. Zhang, P. A. Mykland and Y. Ait-Sahalia. Edgeworth expansions for realized volatility and related estimators. J. Econometrics (2010). To appear. MR2745877
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.