Second-order asymptotic expansion for a non-synchronous covariation estimator

Arnak Dalalyan; Nakahiro Yoshida

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 3, page 748-789
  • ISSN: 0246-0203

Abstract

top
In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition of the estimator’s distribution in the gaussian set-up, a stochastic decomposition of the estimator itself and an accurate evaluation of the Malliavin covariance. To give a concrete example, we compute the constants involved in the resulting expansions for the particular case of sampling scheme generated by two independent Poisson processes.

How to cite

top

Dalalyan, Arnak, and Yoshida, Nakahiro. "Second-order asymptotic expansion for a non-synchronous covariation estimator." Annales de l'I.H.P. Probabilités et statistiques 47.3 (2011): 748-789. <http://eudml.org/doc/239624>.

@article{Dalalyan2011,
abstract = {In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition of the estimator’s distribution in the gaussian set-up, a stochastic decomposition of the estimator itself and an accurate evaluation of the Malliavin covariance. To give a concrete example, we compute the constants involved in the resulting expansions for the particular case of sampling scheme generated by two independent Poisson processes.},
author = {Dalalyan, Arnak, Yoshida, Nakahiro},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {edgeworth expansion; covariation estimation; diffusion process; asynchronous observations; Poisson sampling; Edgeworth expansion},
language = {eng},
number = {3},
pages = {748-789},
publisher = {Gauthier-Villars},
title = {Second-order asymptotic expansion for a non-synchronous covariation estimator},
url = {http://eudml.org/doc/239624},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Dalalyan, Arnak
AU - Yoshida, Nakahiro
TI - Second-order asymptotic expansion for a non-synchronous covariation estimator
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 3
SP - 748
EP - 789
AB - In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition of the estimator’s distribution in the gaussian set-up, a stochastic decomposition of the estimator itself and an accurate evaluation of the Malliavin covariance. To give a concrete example, we compute the constants involved in the resulting expansions for the particular case of sampling scheme generated by two independent Poisson processes.
LA - eng
KW - edgeworth expansion; covariation estimation; diffusion process; asynchronous observations; Poisson sampling; Edgeworth expansion
UR - http://eudml.org/doc/239624
ER -

References

top
  1. [1] T. G. Andersen and T. Bollerslev. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. Int. Econ. Rev. 39 (1998) 885–905. 
  2. [2] T. G. Andersen, T. Bollerslev, F. X. Diebold and H. Ebens. The distribution of realized stock return volatility. J. Fin. Econ. 61 (2001) 43–76. 
  3. [3] T. G. Andersen, T. Bollerslev, F. X. Diebold and P. Labys. The distribution of realized exchange rate volatility. J. Amer. Statist. Assoc. 96 (2001) 42–55. Zbl1015.62107MR1952727
  4. [4] G. J. Babu and K. Singh. On one term Edgeworth correction by Efron’s bootstrap. Sankhyā A 46 (1984) 219–232. Zbl0568.62019MR778872
  5. [5] O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde and N. Shephard. Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. Manuscript. Available at http://www.nuffield.ox.ac.uk/economics/papers/index2007and2008.aspx. 
  6. [6] O. E. Barndorff-Nielsen and N. Shephard. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 (2002) 253–280. Zbl1059.62107MR1904704
  7. [7] P. Bertail and S. Clémencon. Edgeworth expansions of suitably normalized sample mean statistics for atomic Markov chains. Probab. Theory Related Fields 130 (2004) 388–414. Zbl1075.62075MR2095936
  8. [8] A. Bose. Edgeworth correction by bootstrap in autoregressions. Ann. Statist. 16 (1988) 1709–1722. Zbl0653.62016MR964948
  9. [9] F. Comte and E. Renault. Long memory in continuous-time stochastic volatility models. Math. Finance 8 (1998) 291–323. Zbl1020.91021MR1645101
  10. [10] D. Dacunha-Castelle and D. Florens-Zmirou. Estimation of the coefficients of diffusion from discrete observations. Stochastics 19 (1986) 263–284. Zbl0626.62085MR872464
  11. [11] T. Epps. Comovements in stock prices in the very short run. J. Amer. Statist. Assoc. 74 (1979) 291–298. 
  12. [12] D. Florens-Zmirou. On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30 (1993) 790–804. Zbl0796.62070MR1242012
  13. [13] M. Fukasawa. Edgeworth expansion for ergodic diffusions. Probab. Theory Related Fields 142 (2008) 1–20. Zbl1154.60018MR2413265
  14. [14] V. Genon-Catalot and J. Jacod. On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré 29 (1993) 119–151. Zbl0770.62070MR1204521
  15. [15] J. E. Griffin and R. C. A. Oomen. Covariance measurement in the presence of non-synchronous trading and market microstructure noise. Preprint, 2006. Available at http://ssrn.com/abstract=912541. MR2745867
  16. [16] P. Hall. The Bootstrap and Edgeworth Expansion. Springer, New York, 1992. Zbl0744.62026MR1145237
  17. [17] T. Hayashi and S. Kusuoka. Consistent estimation of covariation under non-synchronicity. Stat. Inference Stoch. Process. 11 (2008) 93–106. Zbl1148.62070MR2357555
  18. [18] T. Hayashi and N. Yoshida. On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 11 (2005) 359–379. Zbl1064.62091MR2132731
  19. [19] T. Hayashi and N. Yoshida. Nonsynchronous covariance estimator and limit theorem. Preprint, 2006. 
  20. [20] T. Hayashi and N. Yoshida. Asymptotic normality of a covariance estimator for non-synchronously observed diffusion processes. Ann. Inst. Statist. Math. 60 (2008) 367–406. Zbl1332.62284MR2403524
  21. [21] T. Hayashi and N. Yoshida. Nonsynchronous covariance estimator and limit theorem II. Preprint, 2008. MR2403524
  22. [22] T. Hoshikawa, T. Kanatani, K. Nagai and Y. Nishiyama. Nonparametric estimation methods of integrated multivariate volatilities. Working paper, 2006. Zbl05368899
  23. [23] J. Jacod. On processes with conditional independent increments and stable convergence in law. Semin. Probab. Strasbourg 36 (2002) 383–401. Zbl1034.60035MR1971599
  24. [24] H. Koul and D. Surgailis. Asymptotic expansion of M-estimators with long-memory errors. Ann. Statist. 25 (1997) 818–850. Zbl0885.62101MR1439325
  25. [25] M. Kessler. Estimation of diffusion processes from discrete observations. Scand. J. Statist. 24 (1997) 211–229. Zbl0879.60058MR1455868
  26. [26] A. W. Lo and A. C. MacKinlay. An econometric analysis of non-synchronous trading. J. Econometrics 45 (1990) 181–211. Zbl0712.62102MR1067232
  27. [27] P. Malliavin and M. E. Mancino. Fourier series method for measurement of multivariate volatilities. Finance Stoch. 6 (2002) 49–61. Zbl1008.62091MR1885583
  28. [28] P. A. Mykland. Asymptotic expansions for martingales. Ann. Probab. 21 (1993) 800–818. Zbl0776.60047MR1217566
  29. [29] P. A. Mykland. A Gaussian calculus for inference from high frequency data. Technical Report 563, Dept. Statistics, Univ. Chicago. Zbl1298.91196
  30. [30] P. A. Mykland and L. Zhang. Anova for diffusions and Ito processes. Ann. Statist. 34 (2006) 1931–1963. Zbl1246.91110MR2283722
  31. [31] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Springer, Berlin, 2006. Zbl0837.60050MR2200233
  32. [32] A. Palandri. Consistent realized covariance for asynchronous observations contaminated by market microstructure noise. Manuscript. Available at http://www.palandri.eu/research.html. 
  33. [33] B. L. S. Prakasa-Rao. Asymptotic theory for non-linear least square estimator for diffusion processes. Math. Oper. Statist. Ser. Stat. 14 (1983) 195–209. Zbl0532.62060MR704787
  34. [34] B. L. S. Prakasa-Rao. Statistical inference from sampled data for stochastic processes. Contemp. Math. 80 (1988) 249–284. Zbl0687.62069MR999016
  35. [35] C. Robert and M. Rosenbaum. Ultra high frequency volatility and co-volatility estimation in a microstructure model with uncertainty zones. Submitted. 
  36. [36] Y. Sakamoto and N. Yoshida. Asymptotic expansion under degeneracy. J. Japan Stat. Soc. 33 (2003) 145–156. Zbl1063.62115MR2039891
  37. [37] J. Shanken. Nonsynchronous data and the covariance-factor structure of returns. J. Finance 42 (1987) 221–231. 
  38. [38] A. N. Shiryaev. Probability, 2nd edition. Graduate Texts in Mathematics 95. Springer, New York, 1996. Zbl0835.60002MR1368405
  39. [39] M. Scholes and J. Williams. Estimating betas from non-synchronous data. J. Fin. Econ. 5 (1977) 309–328. 
  40. [40] T. J. Sweeting. Speeds of convergence for the multidimensional central limit theorem. Ann. Probab. 5 (1977) 28–41. Zbl0362.60041MR428400
  41. [41] V. Voev and A. Lunde. Integrated covariance estimation using high-frequency data in the presence of noise. Working paper. Presented at CIREQ Conference on Realized Volatility, 2006. 
  42. [42] N. Yoshida. Estimation for diffusion processes from discrete observation. J. Multivariate Anal. 41 (1992) 220–242. Zbl0811.62083MR1172898
  43. [43] N. Yoshida. Malliavin calculus and asymptotic expansion for martingales. Probab. Theory Related Fields 109 (1997) 301–342. Zbl0888.60020MR1481124
  44. [44] L. Zhang. Estimating covariation: Epps effect, microstructure noise. J. Econometrics (2010). To appear. MR2745865
  45. [45] L. Zhang, P. A. Mykland and Y. Ait-Sahalia. Edgeworth expansions for realized volatility and related estimators. J. Econometrics (2010). To appear. MR2745877

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.