Annealed upper tails for the energy of a charged polymer
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 1, page 80-110
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAsselah, Amine. "Annealed upper tails for the energy of a charged polymer." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 80-110. <http://eudml.org/doc/240166>.
@article{Asselah2011,
abstract = {We study the upper tails for the energy of a randomly charged symmetric and transient random walk. We assume that only charges on the same site interact pairwise. We consider annealed estimates, that is when we average over both randomness, in dimension three or more. We obtain a large deviation principle, and an explicit rate function for a large class of charge distributions.},
author = {Asselah, Amine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random polymer; large deviations; random walk in random scenery; self-intersection local times},
language = {eng},
number = {1},
pages = {80-110},
publisher = {Gauthier-Villars},
title = {Annealed upper tails for the energy of a charged polymer},
url = {http://eudml.org/doc/240166},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Asselah, Amine
TI - Annealed upper tails for the energy of a charged polymer
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 80
EP - 110
AB - We study the upper tails for the energy of a randomly charged symmetric and transient random walk. We assume that only charges on the same site interact pairwise. We consider annealed estimates, that is when we average over both randomness, in dimension three or more. We obtain a large deviation principle, and an explicit rate function for a large class of charge distributions.
LA - eng
KW - random polymer; large deviations; random walk in random scenery; self-intersection local times
UR - http://eudml.org/doc/240166
ER -
References
top- [1] A. Asselah. Annealed lower tails for the energy of a charged polymer. J. Stat. Phys. To appear. Zbl1187.82153MR2594915
- [2] A. Asselah. Shape transition under excess self-intersection for transient random walk. Ann. Henri Poincaré. To appear. Zbl1202.60151MR2641778
- [3] A. Asselah. Large deviations principle for self-intersection local times for simple random walk in dimension d > 4. ALEA 6 (2009) 281–322. Zbl1135.60340MR2544599
- [4] A. Asselah. Large deviations for the self-intersection times for simple random walk in dimension 3. Probab. Theory Related Fields 141 (2008) 19–45. Zbl1135.60340MR2372964
- [5] A. Asselah and F. Castell. Random walk in random scenery and self-intersection local times in dimensions d ≥ 5. Probab. Theory Related Fields 138 (2007) 1–32. Zbl1116.60057MR2288063
- [6] A. Asselah and F. Castell. A note on random walk in random scenery. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 163–173. Zbl1112.60088MR2303117
- [7] X. Chen. Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. AMS, Providence, RI, 2009. Zbl1192.60002MR2584458
- [8] X. Chen. Limit laws for the energy of a charged polymer. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 638–672. Zbl1178.60024MR2446292
- [9] X. Chen and D. Khoshnevisan. From charged polymers to random walk in random scenery. In Proceedings of the Third Erich L. Lehmann Symposium. IMS Lecture Notes—Monograph Series 57 237–251, 2009. Zbl1271.60106MR2681685
- [10] B. Derrida, R. B. Griffith and P. G. Higgs. A model of directed walks with random interactions. Europhys. Lett. 18 (1992) 361–366.
- [11] N. Gantert, R. van der Hofstad and W. König. Deviations of a random walk in a random scenery with stretched exponential tails. Stochastic Process. Appl. 116 (2006) 480–492. Zbl1100.60056MR2199560
- [12] G. Giacomin. Random Polymer Models. Imperial College Press, London, 2007. Zbl1125.82001MR2380992
- [13] R. van der Hofstad and W. König. A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915–944. Zbl1126.82313MR1851362
- [14] F. den Hollander. Random Polymers. Lecture Notes in Mathematics 1974. Springer, Berlin, 2009. Zbl1173.82002MR2504175
- [15] G. Lawler, M. Bramson and D. Griffeath. Internal diffusion limited aggregation. Ann. Probab. 20 (1992) 2117–2140. Zbl0762.60096MR1188055
- [16] A. Nagaev. Integral limit theorems for large deviations when Cramer’s condition is not fulfilled. Teor. Verojatnost. i Primenen. 14 (1969) 51–64, 203–216 (in Russian). Zbl0181.45004MR247652
- [17] S. Nagaev. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979) 745–789. Zbl0418.60033MR542129
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.