Windings of planar random walks and averaged Dehn function
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 1, page 130-147
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topSchapira, Bruno, and Young, Robert. "Windings of planar random walks and averaged Dehn function." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 130-147. <http://eudml.org/doc/240649>.
@article{Schapira2011,
abstract = {We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random curve with a disc.},
author = {Schapira, Bruno, Young, Robert},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {simple random walk; winding number; averaged Dehn function},
language = {eng},
number = {1},
pages = {130-147},
publisher = {Gauthier-Villars},
title = {Windings of planar random walks and averaged Dehn function},
url = {http://eudml.org/doc/240649},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Schapira, Bruno
AU - Young, Robert
TI - Windings of planar random walks and averaged Dehn function
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 130
EP - 147
AB - We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random curve with a disc.
LA - eng
KW - simple random walk; winding number; averaged Dehn function
UR - http://eudml.org/doc/240649
ER -
References
top- [1] G. Baumslag, C. F. Miller III and H. Short. Isoperimetric inequalities and the homology of groups. Invent. Math. 113 (1993) 531–560. Zbl0829.20053MR1231836
- [2] C. Bélisle. Windings of random walks. Ann. Probab. 17 (1989) 1377–1402. Zbl0693.60020MR1048932
- [3] O. Bogopolski and E. Ventura. The mean Dehn functions of abelian groups. J. Group Theory 11 (2008) 569–586. Zbl1193.20050MR2429356
- [4] I. S. Borisov. On the rate of convergence in the “conditional” invariance principle. Teor. Verojatn. Primen. 23 (1978) 67–79. Zbl0382.60034MR471011
- [5] M. R. Bridson. The geometry of the word problem. In Invitations to Geometry and Topology. Oxf. Grad. Texts Math. 7 29–91. Oxford Univ. Press, Oxford, 2002. Zbl0996.54507
- [6] U. Einmahl. Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivariate Anal. 28 (1989) 20–68. Zbl0676.60038MR996984
- [7] C. Garban and J. A. Trujillo Ferreras. The expected area of the filled planar Brownian loop is π / 5. Comm. Math. Phys. 264 (2006) 797–810. Zbl1107.82023MR2217292
- [8] M. Gromov. Asymptotic invariants of infinite groups. In Geometric Group Theory, Vol. 2 (Sussex, 1991) 1–295. London Math. Soc. Lecture Note Ser. 182. Cambridge Univ. Press, Cambridge, 1993. Zbl0841.20039MR1253544
- [9] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent RV’s and the sample DF, I. Z. Wahrsch. Verw. Gebiete 32 (1975) 111–131. Zbl0308.60029MR375412
- [10] J.-F. Le Gall. Some properties of planar Brownian motion. In École d’Été de Probabilités de Saint-Flour XX, 1990111–235. Lecture Notes in Math. 1527. Springer, Berlin, 1992. Zbl0779.60068
- [11] P. Lévy. Processus Stochastiques et Mouvement Brownien. Suivi d’une note de M. Loève. Gauthier-Villars, Paris, 1948. Zbl0034.22603MR190953
- [12] S. C. Port and C. J. Stone. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
- [13] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [14] F. Spitzer. Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 (1958) 187–197. Zbl0089.13601MR104296
- [15] F. Spitzer. Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110–121. Zbl0126.33505MR172343
- [16] W. Werner. Sur les points autour desquels le mouvement Brownien plan tourne beaucoup. Probab. Theory Related Fields 99 (1994) 111–144. Zbl0799.60074MR1273744
- [17] M. Yor. Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson. Z. Wahrsch. Verw. Gebiete 53 (1980) 71–95. Zbl0436.60057
- [18] R. Young. Averaged Dehn functions for nilpotent groups. Topology 47 (2008) 351–367. Zbl1188.20040MR2422531
- [19] A. Y. Zaitsev. Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments. ESAIM Probab. Statist. 2 (1998) 41–108 (electronic). Zbl0897.60033MR1616527
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.