Windings of planar random walks and averaged Dehn function

Bruno Schapira; Robert Young

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 1, page 130-147
  • ISSN: 0246-0203

Abstract

top
We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random curve with a disc.

How to cite

top

Schapira, Bruno, and Young, Robert. "Windings of planar random walks and averaged Dehn function." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 130-147. <http://eudml.org/doc/240649>.

@article{Schapira2011,
abstract = {We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random curve with a disc.},
author = {Schapira, Bruno, Young, Robert},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {simple random walk; winding number; averaged Dehn function},
language = {eng},
number = {1},
pages = {130-147},
publisher = {Gauthier-Villars},
title = {Windings of planar random walks and averaged Dehn function},
url = {http://eudml.org/doc/240649},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Schapira, Bruno
AU - Young, Robert
TI - Windings of planar random walks and averaged Dehn function
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 130
EP - 147
AB - We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random curve with a disc.
LA - eng
KW - simple random walk; winding number; averaged Dehn function
UR - http://eudml.org/doc/240649
ER -

References

top
  1. [1] G. Baumslag, C. F. Miller III and H. Short. Isoperimetric inequalities and the homology of groups. Invent. Math. 113 (1993) 531–560. Zbl0829.20053MR1231836
  2. [2] C. Bélisle. Windings of random walks. Ann. Probab. 17 (1989) 1377–1402. Zbl0693.60020MR1048932
  3. [3] O. Bogopolski and E. Ventura. The mean Dehn functions of abelian groups. J. Group Theory 11 (2008) 569–586. Zbl1193.20050MR2429356
  4. [4] I. S. Borisov. On the rate of convergence in the “conditional” invariance principle. Teor. Verojatn. Primen. 23 (1978) 67–79. Zbl0382.60034MR471011
  5. [5] M. R. Bridson. The geometry of the word problem. In Invitations to Geometry and Topology. Oxf. Grad. Texts Math. 7 29–91. Oxford Univ. Press, Oxford, 2002. Zbl0996.54507
  6. [6] U. Einmahl. Extensions of results of Komlós, Major, and Tusnády to the multivariate case. J. Multivariate Anal. 28 (1989) 20–68. Zbl0676.60038MR996984
  7. [7] C. Garban and J. A. Trujillo Ferreras. The expected area of the filled planar Brownian loop is π / 5. Comm. Math. Phys. 264 (2006) 797–810. Zbl1107.82023MR2217292
  8. [8] M. Gromov. Asymptotic invariants of infinite groups. In Geometric Group Theory, Vol. 2 (Sussex, 1991) 1–295. London Math. Soc. Lecture Note Ser. 182. Cambridge Univ. Press, Cambridge, 1993. Zbl0841.20039MR1253544
  9. [9] J. Komlós, P. Major and G. Tusnády. An approximation of partial sums of independent RV’s and the sample DF, I. Z. Wahrsch. Verw. Gebiete 32 (1975) 111–131. Zbl0308.60029MR375412
  10. [10] J.-F. Le Gall. Some properties of planar Brownian motion. In École d’Été de Probabilités de Saint-Flour XX, 1990111–235. Lecture Notes in Math. 1527. Springer, Berlin, 1992. Zbl0779.60068
  11. [11] P. Lévy. Processus Stochastiques et Mouvement Brownien. Suivi d’une note de M. Loève. Gauthier-Villars, Paris, 1948. Zbl0034.22603MR190953
  12. [12] S. C. Port and C. J. Stone. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
  13. [13] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
  14. [14] F. Spitzer. Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87 (1958) 187–197. Zbl0089.13601MR104296
  15. [15] F. Spitzer. Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110–121. Zbl0126.33505MR172343
  16. [16] W. Werner. Sur les points autour desquels le mouvement Brownien plan tourne beaucoup. Probab. Theory Related Fields 99 (1994) 111–144. Zbl0799.60074MR1273744
  17. [17] M. Yor. Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson. Z. Wahrsch. Verw. Gebiete 53 (1980) 71–95. Zbl0436.60057
  18. [18] R. Young. Averaged Dehn functions for nilpotent groups. Topology 47 (2008) 351–367. Zbl1188.20040MR2422531
  19. [19] A. Y. Zaitsev. Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments. ESAIM Probab. Statist. 2 (1998) 41–108 (electronic). Zbl0897.60033MR1616527

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.