The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Windings of planar random walks and averaged Dehn function”

A note on quenched moderate deviations for Sinai’s random walk in random environment

Francis Comets, Serguei Popov (2004)

ESAIM: Probability and Statistics

Similarity:

We consider the continuous time, one-dimensional random walk in random environment in Sinai’s regime. We show that the probability for the particle to be, at time t and in a typical environment, at a distance larger than t a ( 0 < a < 1 ) from its initial position, is exp { - Const · t a / [ ( 1 - a ) ln t ] ( 1 + o ( 1 ) ) } .

Large deviations for transient random walks in random environment on a Galton–Watson tree

Elie Aidékon (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Consider a random walk in random environment on a supercritical Galton–Watson tree, and let be the hitting time of generation . The paper presents a large deviation principle for /, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.