On naturally reductive left-invariant metrics of
Stefan Halverscheid; Andrea Iannuzzi
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 2, page 171-187
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [A] M. Abate, “Iteration Theory of Holomorphic Mapping on Taut Manifolds”, Mediterranean Press, Commenda di Rende, Italy. Zbl0747.32002
- [B] L. Bianchi, Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Mem. Soc. It. delle Sc. (dei XL), (3) 11 (1898), 267–252 (also in Luigi Bianchi, Opere, Vol. IX, Edizioni Cremonese, Roma, 1958). JFM29.0415.01
- [BTV] J. Berndt, F. Tricerri, L. Vanhecke, “Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces”, LNM 1598, Springer-Verlag, 1995. Zbl0818.53067MR1340192
- [C] E. Cartan, “Leçons sur la Géométrie des Espaces de Riemann”, Gauthier-Villars, Paris, 1951. Zbl0044.18401MR44878
- [DZ] J. E. D’Atri, W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Amer. Math. Soc. 215 (1979). Zbl0404.53044MR519928
- [G] C. S. Gordon, Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), 467–487. Zbl0554.53035MR787113
- [H] S. Helgason, “Differential Geometry, Lie Groups and Symmetric Spaces”, GSM 34, AMS, Providence, 2001. Zbl0993.53002MR1834454
- [HI] S. Halverscheid, A. Iannuzzi, A family of adapted complexifications for noncompact semisimple Lie groups, ArXiv: math.CV/0503377. Zbl1180.53053
- [KN] S. Kobayashi, K. Nomizu, “Foundations of Differential Geometry”, Vol. II., Interscience, New York, 1969. Zbl0119.37502MR238225
- [M1] J. Milnor“Morse Theory”, Annals of Math. Studies 51, Princeton University Press, Princeton, N.J. 1963. Zbl0108.10401MR163331
- [M2] J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293–329. Zbl0341.53030MR425012
- [O’N] B. O’Neill, “Semi-Riemannian Geometry”, Academic Press, 1983. Zbl0531.53051MR719023
- [V] G. Vranceanu, “Leçons de Géométrie Différentielle”, Vol. I, Ed. Acad. Rp. Pop. Roumaine, 1957. Zbl0119.17102MR124823
- [W] J. A. Wolf, “Spaces of Constant Curvature”, New York: McGraw-Hill, 1967. Zbl0162.53304MR217740