Explicit parametrix and local limit theorems for some degenerate diffusion processes
Valentin Konakov; Stéphane Menozzi; Stanislav Molchanov
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 4, page 908-923
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967) 890–896. Zbl0153.42002MR217444
- [2] P. Baldi. Premières majorations de la densité d’une diffusion sur Rm, méthode de la parametrix. Astérisques84–85 (1978) 43–53. Zbl0507.60071
- [3] G. Ben Arous. Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. École Norm. Sup. (4) 21 (1988) 307–331. Zbl0699.35047MR974408
- [4] G. Ben Arous and R. Léandre. Décroissance exponentielle du noyau de la chaleur sur la diagonale, II. Probab. Theory Related Fields 90 (1991) 377–402. Zbl0734.60027MR1133372
- [5] E. Barucci, S. Polidoro and V. Vespri. Some results on partial differential equations and asian options. Math. Models Methods Appl. Sci. 3 (2001) 475–497. Zbl1034.35166MR1830951
- [6] R. Bhattacharya and R. Rao. Normal Approximations and Asymptotic Expansions. Wiley, New York, 1976. Zbl0331.41023MR436272
- [7] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations, II. Convergence rate of the density. Monte Carlo Methods Appl. 2 (1996) 93–128. Zbl0866.60049MR1401964
- [8] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre, I. Résolvantes, théorème de Hörmander et applications. Bull. Sci. Math. 114 (1990) 421–462. Zbl0715.60064MR1077270
- [9] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre, II. Problème de Dirichlet. Bull. Sci. Math. 115 (1991) 81–122. Zbl0790.60048MR1086940
- [10] E. B. Dynkin. Markov Processes. Springer, Berlin, 1963. Zbl0132.37901
- [11] A. Friedman. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, 1964. Zbl0144.34903MR181836
- [12] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171 (2004) 151–218. Zbl1139.82323MR2034753
- [13] L. Hörmander. Hypoelliptic second order differential operators. Acta. Math. 119 (1967) 147–171. Zbl0156.10701MR222474
- [14] V. D. Konakov and S. A Molchanov. On the convergence of Markov chains to diffusion processes. Teor. Veroyatn. Mat. Statist. (in Russian) 31 (1984) 51–64. English translation in Theory Probab. Math. Statist. 31 (1985) 59–73. Zbl0594.60077MR816126
- [15] V. Konakov and E. Mammen. Local limit theorems for transition densities of Markov chains converging to diffusions. Probab. Theory Related Fields 117 (2000) 551–587. Zbl0996.60083MR1777133
- [16] V. Konakov, S. Menozzi and S. Molchanov. Explicit parametrix and local limit theorems for some degenerate diffusion processes, 2009. Available at http://hal.archives-ouvertes.fr/hal-00256588/fr/. Zbl1211.60036MR2744877
- [17] A. N. Kolmogorov. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. of Math. (2) 35 (1934) 116–117. Zbl0008.39906MR1503147
- [18] S. Kusuoka and D Stroock. Applications of the Malliavin calculus, III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 391–442. Zbl0633.60078MR914028
- [19] H. P. McKean and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geom. 1 (1967) 43–69. Zbl0198.44301MR217739
- [20] J. Mattingly and A. Stuart. Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Inhomogeneous random systems. Markov Process. Related Fields 8 (2004) 199–214. Zbl1014.60059MR1924935
- [21] S. A. Molchanov and A. N. Varchenko. Applications of the stationary phase method in limit theorems for Markov chains. Dokl. Akad. Nauk SSSR (Translated in Soviet Math. Dokl. (18) 265–269) 233 (1977) 11–14. Zbl0373.60082MR474506
- [22] J. R. Norris. Simplified Malliavin calculus. Séminaire de Probabilités, XX 101–130. Springer, Berlin, 1986. Zbl0609.60066MR942019
- [23] D. Nualart. Malliavin Calculus and Related Topics. Springer, New York, 1995. Zbl1099.60003MR1344217
- [24] D. W. Stroock. Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de Probabilités, XXII 316–347. Springer, Berlin, 1988. Zbl0651.47031MR960535
- [25] D. Talay. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Related Fields 8 (2002) 163–198. Zbl1011.60039MR1924934
- [26] B. Lapeyre and E. Temam. Competitive Monte Carlo methods for the pricing of Asian Options. Journal of Computational Finance 5 (2001) 39–59.
- [27] V. V. Yurinski. Estimates for the characteristic functions of certain degenerate multidimensional distributions. Teor. Verojatn. Primen. (Translated in Theory Probab. Appl. 22 101–113) 17 (1972) 99–110. Zbl0273.60007MR297054