Explicit parametrix and local limit theorems for some degenerate diffusion processes

Valentin Konakov; Stéphane Menozzi; Stanislav Molchanov

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 4, page 908-923
  • ISSN: 0246-0203

Abstract

top
For a class of degenerate diffusion processes of rank 2, i.e. when only Poisson brackets of order one are needed to span the whole space, we obtain a parametrix representation of McKean–Singer [J. Differential Geom.1 (1967) 43–69] type for the density. We therefrom derive an explicit gaussian upper bound and a partial lower bound that characterize the additional singularity induced by the degeneracy. This particular representation then allows to give a local limit theorem with the usual convergence rate for an associated Markov chain approximation. The key point is that the “weak” degeneracy allows to exploit the techniques first introduced in Konakov and Molchanov [Teor. Veroyatn. Mat. Statist.31 (1984) 51–64] and then developed in [Probab. Theory Related Fields117 (2000) 551–587] that rely on gaussian approximations.

How to cite

top

Konakov, Valentin, Menozzi, Stéphane, and Molchanov, Stanislav. "Explicit parametrix and local limit theorems for some degenerate diffusion processes." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 908-923. <http://eudml.org/doc/241286>.

@article{Konakov2010,
abstract = {For a class of degenerate diffusion processes of rank 2, i.e. when only Poisson brackets of order one are needed to span the whole space, we obtain a parametrix representation of McKean–Singer [J. Differential Geom.1 (1967) 43–69] type for the density. We therefrom derive an explicit gaussian upper bound and a partial lower bound that characterize the additional singularity induced by the degeneracy. This particular representation then allows to give a local limit theorem with the usual convergence rate for an associated Markov chain approximation. The key point is that the “weak” degeneracy allows to exploit the techniques first introduced in Konakov and Molchanov [Teor. Veroyatn. Mat. Statist.31 (1984) 51–64] and then developed in [Probab. Theory Related Fields117 (2000) 551–587] that rely on gaussian approximations.},
author = {Konakov, Valentin, Menozzi, Stéphane, Molchanov, Stanislav},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {degenerate diffusion processes; parametrix; Markov chain approximation; local limit theorems},
language = {eng},
number = {4},
pages = {908-923},
publisher = {Gauthier-Villars},
title = {Explicit parametrix and local limit theorems for some degenerate diffusion processes},
url = {http://eudml.org/doc/241286},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Konakov, Valentin
AU - Menozzi, Stéphane
AU - Molchanov, Stanislav
TI - Explicit parametrix and local limit theorems for some degenerate diffusion processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 908
EP - 923
AB - For a class of degenerate diffusion processes of rank 2, i.e. when only Poisson brackets of order one are needed to span the whole space, we obtain a parametrix representation of McKean–Singer [J. Differential Geom.1 (1967) 43–69] type for the density. We therefrom derive an explicit gaussian upper bound and a partial lower bound that characterize the additional singularity induced by the degeneracy. This particular representation then allows to give a local limit theorem with the usual convergence rate for an associated Markov chain approximation. The key point is that the “weak” degeneracy allows to exploit the techniques first introduced in Konakov and Molchanov [Teor. Veroyatn. Mat. Statist.31 (1984) 51–64] and then developed in [Probab. Theory Related Fields117 (2000) 551–587] that rely on gaussian approximations.
LA - eng
KW - degenerate diffusion processes; parametrix; Markov chain approximation; local limit theorems
UR - http://eudml.org/doc/241286
ER -

References

top
  1. [1] D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967) 890–896. Zbl0153.42002MR217444
  2. [2] P. Baldi. Premières majorations de la densité d’une diffusion sur Rm, méthode de la parametrix. Astérisques84–85 (1978) 43–53. Zbl0507.60071
  3. [3] G. Ben Arous. Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. École Norm. Sup. (4) 21 (1988) 307–331. Zbl0699.35047MR974408
  4. [4] G. Ben Arous and R. Léandre. Décroissance exponentielle du noyau de la chaleur sur la diagonale, II. Probab. Theory Related Fields 90 (1991) 377–402. Zbl0734.60027MR1133372
  5. [5] E. Barucci, S. Polidoro and V. Vespri. Some results on partial differential equations and asian options. Math. Models Methods Appl. Sci. 3 (2001) 475–497. Zbl1034.35166MR1830951
  6. [6] R. Bhattacharya and R. Rao. Normal Approximations and Asymptotic Expansions. Wiley, New York, 1976. Zbl0331.41023MR436272
  7. [7] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations, II. Convergence rate of the density. Monte Carlo Methods Appl. 2 (1996) 93–128. Zbl0866.60049MR1401964
  8. [8] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre, I. Résolvantes, théorème de Hörmander et applications. Bull. Sci. Math. 114 (1990) 421–462. Zbl0715.60064MR1077270
  9. [9] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre, II. Problème de Dirichlet. Bull. Sci. Math. 115 (1991) 81–122. Zbl0790.60048MR1086940
  10. [10] E. B. Dynkin. Markov Processes. Springer, Berlin, 1963. Zbl0132.37901
  11. [11] A. Friedman. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, 1964. Zbl0144.34903MR181836
  12. [12] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171 (2004) 151–218. Zbl1139.82323MR2034753
  13. [13] L. Hörmander. Hypoelliptic second order differential operators. Acta. Math. 119 (1967) 147–171. Zbl0156.10701MR222474
  14. [14] V. D. Konakov and S. A Molchanov. On the convergence of Markov chains to diffusion processes. Teor. Veroyatn. Mat. Statist. (in Russian) 31 (1984) 51–64. English translation in Theory Probab. Math. Statist. 31 (1985) 59–73. Zbl0594.60077MR816126
  15. [15] V. Konakov and E. Mammen. Local limit theorems for transition densities of Markov chains converging to diffusions. Probab. Theory Related Fields 117 (2000) 551–587. Zbl0996.60083MR1777133
  16. [16] V. Konakov, S. Menozzi and S. Molchanov. Explicit parametrix and local limit theorems for some degenerate diffusion processes, 2009. Available at http://hal.archives-ouvertes.fr/hal-00256588/fr/. Zbl1211.60036MR2744877
  17. [17] A. N. Kolmogorov. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. of Math. (2) 35 (1934) 116–117. Zbl0008.39906MR1503147
  18. [18] S. Kusuoka and D Stroock. Applications of the Malliavin calculus, III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 391–442. Zbl0633.60078MR914028
  19. [19] H. P. McKean and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geom. 1 (1967) 43–69. Zbl0198.44301MR217739
  20. [20] J. Mattingly and A. Stuart. Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Inhomogeneous random systems. Markov Process. Related Fields 8 (2004) 199–214. Zbl1014.60059MR1924935
  21. [21] S. A. Molchanov and A. N. Varchenko. Applications of the stationary phase method in limit theorems for Markov chains. Dokl. Akad. Nauk SSSR (Translated in Soviet Math. Dokl. (18) 265–269) 233 (1977) 11–14. Zbl0373.60082MR474506
  22. [22] J. R. Norris. Simplified Malliavin calculus. Séminaire de Probabilités, XX 101–130. Springer, Berlin, 1986. Zbl0609.60066MR942019
  23. [23] D. Nualart. Malliavin Calculus and Related Topics. Springer, New York, 1995. Zbl1099.60003MR1344217
  24. [24] D. W. Stroock. Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de Probabilités, XXII 316–347. Springer, Berlin, 1988. Zbl0651.47031MR960535
  25. [25] D. Talay. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Related Fields 8 (2002) 163–198. Zbl1011.60039MR1924934
  26. [26] B. Lapeyre and E. Temam. Competitive Monte Carlo methods for the pricing of Asian Options. Journal of Computational Finance 5 (2001) 39–59. 
  27. [27] V. V. Yurinski. Estimates for the characteristic functions of certain degenerate multidimensional distributions. Teor. Verojatn. Primen. (Translated in Theory Probab. Appl. 22 101–113) 17 (1972) 99–110. Zbl0273.60007MR297054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.