Explicit parametrix and local limit theorems for some degenerate diffusion processes
Valentin Konakov; Stéphane Menozzi; Stanislav Molchanov
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 4, page 908-923
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topKonakov, Valentin, Menozzi, Stéphane, and Molchanov, Stanislav. "Explicit parametrix and local limit theorems for some degenerate diffusion processes." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 908-923. <http://eudml.org/doc/241286>.
@article{Konakov2010,
abstract = {For a class of degenerate diffusion processes of rank 2, i.e. when only Poisson brackets of order one are needed to span the whole space, we obtain a parametrix representation of McKean–Singer [J. Differential Geom.1 (1967) 43–69] type for the density. We therefrom derive an explicit gaussian upper bound and a partial lower bound that characterize the additional singularity induced by the degeneracy. This particular representation then allows to give a local limit theorem with the usual convergence rate for an associated Markov chain approximation. The key point is that the “weak” degeneracy allows to exploit the techniques first introduced in Konakov and Molchanov [Teor. Veroyatn. Mat. Statist.31 (1984) 51–64] and then developed in [Probab. Theory Related Fields117 (2000) 551–587] that rely on gaussian approximations.},
author = {Konakov, Valentin, Menozzi, Stéphane, Molchanov, Stanislav},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {degenerate diffusion processes; parametrix; Markov chain approximation; local limit theorems},
language = {eng},
number = {4},
pages = {908-923},
publisher = {Gauthier-Villars},
title = {Explicit parametrix and local limit theorems for some degenerate diffusion processes},
url = {http://eudml.org/doc/241286},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Konakov, Valentin
AU - Menozzi, Stéphane
AU - Molchanov, Stanislav
TI - Explicit parametrix and local limit theorems for some degenerate diffusion processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 908
EP - 923
AB - For a class of degenerate diffusion processes of rank 2, i.e. when only Poisson brackets of order one are needed to span the whole space, we obtain a parametrix representation of McKean–Singer [J. Differential Geom.1 (1967) 43–69] type for the density. We therefrom derive an explicit gaussian upper bound and a partial lower bound that characterize the additional singularity induced by the degeneracy. This particular representation then allows to give a local limit theorem with the usual convergence rate for an associated Markov chain approximation. The key point is that the “weak” degeneracy allows to exploit the techniques first introduced in Konakov and Molchanov [Teor. Veroyatn. Mat. Statist.31 (1984) 51–64] and then developed in [Probab. Theory Related Fields117 (2000) 551–587] that rely on gaussian approximations.
LA - eng
KW - degenerate diffusion processes; parametrix; Markov chain approximation; local limit theorems
UR - http://eudml.org/doc/241286
ER -
References
top- [1] D. G. Aronson. Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967) 890–896. Zbl0153.42002MR217444
- [2] P. Baldi. Premières majorations de la densité d’une diffusion sur Rm, méthode de la parametrix. Astérisques84–85 (1978) 43–53. Zbl0507.60071
- [3] G. Ben Arous. Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Ann. Sci. École Norm. Sup. (4) 21 (1988) 307–331. Zbl0699.35047MR974408
- [4] G. Ben Arous and R. Léandre. Décroissance exponentielle du noyau de la chaleur sur la diagonale, II. Probab. Theory Related Fields 90 (1991) 377–402. Zbl0734.60027MR1133372
- [5] E. Barucci, S. Polidoro and V. Vespri. Some results on partial differential equations and asian options. Math. Models Methods Appl. Sci. 3 (2001) 475–497. Zbl1034.35166MR1830951
- [6] R. Bhattacharya and R. Rao. Normal Approximations and Asymptotic Expansions. Wiley, New York, 1976. Zbl0331.41023MR436272
- [7] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations, II. Convergence rate of the density. Monte Carlo Methods Appl. 2 (1996) 93–128. Zbl0866.60049MR1401964
- [8] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre, I. Résolvantes, théorème de Hörmander et applications. Bull. Sci. Math. 114 (1990) 421–462. Zbl0715.60064MR1077270
- [9] P. Cattiaux. Calcul stochastique et opérateurs dégénérés du second ordre, II. Problème de Dirichlet. Bull. Sci. Math. 115 (1991) 81–122. Zbl0790.60048MR1086940
- [10] E. B. Dynkin. Markov Processes. Springer, Berlin, 1963. Zbl0132.37901
- [11] A. Friedman. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, 1964. Zbl0144.34903MR181836
- [12] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker–Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171 (2004) 151–218. Zbl1139.82323MR2034753
- [13] L. Hörmander. Hypoelliptic second order differential operators. Acta. Math. 119 (1967) 147–171. Zbl0156.10701MR222474
- [14] V. D. Konakov and S. A Molchanov. On the convergence of Markov chains to diffusion processes. Teor. Veroyatn. Mat. Statist. (in Russian) 31 (1984) 51–64. English translation in Theory Probab. Math. Statist. 31 (1985) 59–73. Zbl0594.60077MR816126
- [15] V. Konakov and E. Mammen. Local limit theorems for transition densities of Markov chains converging to diffusions. Probab. Theory Related Fields 117 (2000) 551–587. Zbl0996.60083MR1777133
- [16] V. Konakov, S. Menozzi and S. Molchanov. Explicit parametrix and local limit theorems for some degenerate diffusion processes, 2009. Available at http://hal.archives-ouvertes.fr/hal-00256588/fr/. Zbl1211.60036MR2744877
- [17] A. N. Kolmogorov. Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. of Math. (2) 35 (1934) 116–117. Zbl0008.39906MR1503147
- [18] S. Kusuoka and D Stroock. Applications of the Malliavin calculus, III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 391–442. Zbl0633.60078MR914028
- [19] H. P. McKean and I. M. Singer. Curvature and the eigenvalues of the Laplacian. J. Differential Geom. 1 (1967) 43–69. Zbl0198.44301MR217739
- [20] J. Mattingly and A. Stuart. Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Inhomogeneous random systems. Markov Process. Related Fields 8 (2004) 199–214. Zbl1014.60059MR1924935
- [21] S. A. Molchanov and A. N. Varchenko. Applications of the stationary phase method in limit theorems for Markov chains. Dokl. Akad. Nauk SSSR (Translated in Soviet Math. Dokl. (18) 265–269) 233 (1977) 11–14. Zbl0373.60082MR474506
- [22] J. R. Norris. Simplified Malliavin calculus. Séminaire de Probabilités, XX 101–130. Springer, Berlin, 1986. Zbl0609.60066MR942019
- [23] D. Nualart. Malliavin Calculus and Related Topics. Springer, New York, 1995. Zbl1099.60003MR1344217
- [24] D. W. Stroock. Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de Probabilités, XXII 316–347. Springer, Berlin, 1988. Zbl0651.47031MR960535
- [25] D. Talay. Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Related Fields 8 (2002) 163–198. Zbl1011.60039MR1924934
- [26] B. Lapeyre and E. Temam. Competitive Monte Carlo methods for the pricing of Asian Options. Journal of Computational Finance 5 (2001) 39–59.
- [27] V. V. Yurinski. Estimates for the characteristic functions of certain degenerate multidimensional distributions. Teor. Verojatn. Primen. (Translated in Theory Probab. Appl. 22 101–113) 17 (1972) 99–110. Zbl0273.60007MR297054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.