Metric currents and geometry of Wasserstein spaces
Rendiconti del Seminario Matematico della Università di Padova (2010)
- Volume: 124, page 91-125
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGranieri, Luca. "Metric currents and geometry of Wasserstein spaces." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 91-125. <http://eudml.org/doc/241884>.
@article{Granieri2010,
author = {Granieri, Luca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Monge-Kantorovich problem; Wasserstein space; homology; metric recurrent},
language = {eng},
pages = {91-125},
publisher = {Seminario Matematico of the University of Padua},
title = {Metric currents and geometry of Wasserstein spaces},
url = {http://eudml.org/doc/241884},
volume = {124},
year = {2010},
}
TY - JOUR
AU - Granieri, Luca
TI - Metric currents and geometry of Wasserstein spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 91
EP - 125
LA - eng
KW - Monge-Kantorovich problem; Wasserstein space; homology; metric recurrent
UR - http://eudml.org/doc/241884
ER -
References
top- [1] L. Ambrosio, Lecture Notes on Transport Problems, in "Mathematical Aspects of Evolving Interfaces". Lecture Notes in Mathematics, 1812 (Springer, Berlin, 2003), pp. 1--52. Zbl1047.35001MR2011032
- [2] L. Ambrosio - N. Gigli - G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 2005. Zbl1145.35001MR2129498
- [3] L. Ambrosio - B. Kirchheim, Currents in Metric Spaces, Acta Mathematica, 185, no. 1 (2000), pp. 1--80. Zbl0984.49025MR1794185
- [4] L. Ambrosio - P. Tilli, Topics on Analysis in Metric Spaces, Oxford Lectures Series in Mathematics and its Applications, 25, Oxford University Press, Oxford, 2004. Zbl1080.28001MR2039660
- [5] V. Bangert, Minimal measures and minimizing closed normal one-currents, GAFA Geom. Funct. Anal., 9, no. 3 (1999), pp. 413--427. Zbl0973.58004MR1708452
- [6] G. Bouchitté - G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation, Journal European Math. Soc., 3 (2001), pp. 139--168. Zbl0982.49025MR1831873
- [7] Y. Brenier, Extended Monge-Kantorovich Theory, in Optimal Transportation and Applications, Lecture Notes in Mathematics, 1813 (Springer, Berlin, 2003), pp. 91--121. Zbl1064.49036MR2006306
- [8] J. Benamou - Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, no. 3 (2000), pp. 375--393. Zbl0968.76069MR1738163
- [9] P. Bernard - B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS), 9, no. 1 (2007), pp. 85--121. Zbl1241.49025MR2283105
- [10] G. Contreras - R. Iturriaga, Global Minimizers of Autonomous Lagrangians. IMPA, Rio de Janeiro, 1999. Zbl0957.37065MR1720372
- [11] L. De Pascale - M. S. Gelli - L. Granieri, Minimal measures, one-dimensional currents and the Monge-Kantorovich problem, Calc. Var., 27, no. 1 (2006), pp. 1--23. Zbl1096.37033MR2241304
- [12] B. Dacorogna, Direct Methods in the Calculus of Variations, second edition, Springer, 2008. Zbl0703.49001MR2361288
- [13] L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer (survey paper), Current Developments in Mathematics, 1997, International Press (1999), edited by S. T. Yau. Zbl0954.35011MR1698853
- [14] W. Fulton, Algebraic Topology. Springer, 1995. Zbl0852.55001MR1343250
- [15] H. Federer, Geometric Measure Theory. Springer (Berlin), 1969. Zbl0874.49001MR257325
- [16] W. Gangbo - H. Kil - T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, forthcoming on Memoirs AMS. Zbl1221.53001
- [17] W. Gangbo - R. J. Mc Cann, The geometry of optimal transportation, Acta Math., 177 (1996), pp. 113--161. Zbl0887.49017MR1440931
- [18] M. Giaquinta - G. Modica - J. Souček, Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 37. Springer-Verlag, Berlin, 1998. Zbl0914.49001MR1645086
- [19] L. Granieri, On action minimizing measures for the Monge-Kantorovich problem, NoDEA 14 (2007), pp. 125--152. Zbl1133.37027MR2346457
- [20] L. Granieri, Mass Transportation Problems and Minimal Measures. Ph.D. Thesis in Mathematics, Pisa, 2005.
- [21] B. Kloeckner, Geometric study of Wasserstein spaces: Euclidean spaces, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze IX, 2 (2010), pp. 297--323. Zbl1218.53079MR2731158
- [22] R. Jordan - D. Kinderlehrer - F. Otto, The variational formulation of the Fokker-Plank equation, Siam J. Math. Anal., 29 (1998), pp. 1--17. Zbl0915.35120MR1617171
- [23] J. Jost, Riemannian Geometry and Geometric Analysis. Springer, 2002. Zbl1034.53001MR1871261
- [24] J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects. Lectures in Math. ETH Zurich, Birkhauser Verlag, Basel, 1997. Zbl0896.53002MR1451625
- [25] U. Lang - V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, GAFA Geom. Funct. Anal., 7 (1997), pp. 535--560. Zbl0891.53046MR1466337
- [26] F. Otto, The geometry of dissipative evolution equations: the porus medium equation, Comm. Partial Differential Equations 26, no. 1-2 (2001), pp. 101--174. Zbl0984.35089MR1842429
- [27] K. T. Sturm, Stochastics and Analysis on Metric Spaces, lecture notes in preparation.
- [28] K. T. Sturm, Metric spaces of lower bounded curvature, Exposition. Math., 17, no. 1 (1999), pp. 35--47. Zbl0983.53025MR1687468
- [29] K. T. Sturm, Probability Measures on Metric Spaces of Nonpositive Curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), pp. 357--390, Contemp. Math., 338, AMS, Providence, RI, 2003. Zbl1040.60002MR2039961
- [30] K. T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196, no.1 (2006), pp. 65--131. Zbl1105.53035MR2237206
- [31] C. Villani, Topics in Mass Transportation. Graduate Studies in mathematics, 58, AMS, Providence, RI, 2003. Zbl1106.90001MR1964483
- [32] C. Villani, Optimal Transport, Old and New. Springer, 2009. Zbl1156.53003MR2459454
- [33] S. Wenger, Isoperimetric inequalities of euclidean type in metric spaces, GAFA, Geom. funct. anal., Vol. 15 (2005), pp. 534--554. Zbl1084.53037MR2153909
- [34] S. Wenger, Flat convergence for integral currents in metric spaces, Calc. Var., 28 (2007), pp. 139--160. Zbl1110.53030MR2284563
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.