Metric currents and geometry of Wasserstein spaces

Luca Granieri

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 124, page 91-125
  • ISSN: 0041-8994

How to cite

top

Granieri, Luca. "Metric currents and geometry of Wasserstein spaces." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 91-125. <http://eudml.org/doc/241884>.

@article{Granieri2010,
author = {Granieri, Luca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Monge-Kantorovich problem; Wasserstein space; homology; metric recurrent},
language = {eng},
pages = {91-125},
publisher = {Seminario Matematico of the University of Padua},
title = {Metric currents and geometry of Wasserstein spaces},
url = {http://eudml.org/doc/241884},
volume = {124},
year = {2010},
}

TY - JOUR
AU - Granieri, Luca
TI - Metric currents and geometry of Wasserstein spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 91
EP - 125
LA - eng
KW - Monge-Kantorovich problem; Wasserstein space; homology; metric recurrent
UR - http://eudml.org/doc/241884
ER -

References

top
  1. [1] L. Ambrosio, Lecture Notes on Transport Problems, in "Mathematical Aspects of Evolving Interfaces". Lecture Notes in Mathematics, 1812 (Springer, Berlin, 2003), pp. 1--52. Zbl1047.35001MR2011032
  2. [2] L. Ambrosio - N. Gigli - G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 2005. Zbl1145.35001MR2129498
  3. [3] L. Ambrosio - B. Kirchheim, Currents in Metric Spaces, Acta Mathematica, 185, no. 1 (2000), pp. 1--80. Zbl0984.49025MR1794185
  4. [4] L. Ambrosio - P. Tilli, Topics on Analysis in Metric Spaces, Oxford Lectures Series in Mathematics and its Applications, 25, Oxford University Press, Oxford, 2004. Zbl1080.28001MR2039660
  5. [5] V. Bangert, Minimal measures and minimizing closed normal one-currents, GAFA Geom. Funct. Anal., 9, no. 3 (1999), pp. 413--427. Zbl0973.58004MR1708452
  6. [6] G. Bouchitté - G. Buttazzo, Characterization of optimal shapes and masses through Monge-Kantorovich equation, Journal European Math. Soc., 3 (2001), pp. 139--168. Zbl0982.49025MR1831873
  7. [7] Y. Brenier, Extended Monge-Kantorovich Theory, in Optimal Transportation and Applications, Lecture Notes in Mathematics, 1813 (Springer, Berlin, 2003), pp. 91--121. Zbl1064.49036MR2006306
  8. [8] J. Benamou - Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, no. 3 (2000), pp. 375--393. Zbl0968.76069MR1738163
  9. [9] P. Bernard - B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS), 9, no. 1 (2007), pp. 85--121. Zbl1241.49025MR2283105
  10. [10] G. Contreras - R. Iturriaga, Global Minimizers of Autonomous Lagrangians. IMPA, Rio de Janeiro, 1999. Zbl0957.37065MR1720372
  11. [11] L. De Pascale - M. S. Gelli - L. Granieri, Minimal measures, one-dimensional currents and the Monge-Kantorovich problem, Calc. Var., 27, no. 1 (2006), pp. 1--23. Zbl1096.37033MR2241304
  12. [12] B. Dacorogna, Direct Methods in the Calculus of Variations, second edition, Springer, 2008. Zbl0703.49001MR2361288
  13. [13] L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer (survey paper), Current Developments in Mathematics, 1997, International Press (1999), edited by S. T. Yau. Zbl0954.35011MR1698853
  14. [14] W. Fulton, Algebraic Topology. Springer, 1995. Zbl0852.55001MR1343250
  15. [15] H. Federer, Geometric Measure Theory. Springer (Berlin), 1969. Zbl0874.49001MR257325
  16. [16] W. Gangbo - H. Kil - T. Pacini, Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, forthcoming on Memoirs AMS. Zbl1221.53001
  17. [17] W. Gangbo - R. J. Mc Cann, The geometry of optimal transportation, Acta Math., 177 (1996), pp. 113--161. Zbl0887.49017MR1440931
  18. [18] M. Giaquinta - G. Modica - J. Souček, Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 37. Springer-Verlag, Berlin, 1998. Zbl0914.49001MR1645086
  19. [19] L. Granieri, On action minimizing measures for the Monge-Kantorovich problem, NoDEA 14 (2007), pp. 125--152. Zbl1133.37027MR2346457
  20. [20] L. Granieri, Mass Transportation Problems and Minimal Measures. Ph.D. Thesis in Mathematics, Pisa, 2005. 
  21. [21] B. Kloeckner, Geometric study of Wasserstein spaces: Euclidean spaces, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze IX, 2 (2010), pp. 297--323. Zbl1218.53079MR2731158
  22. [22] R. Jordan - D. Kinderlehrer - F. Otto, The variational formulation of the Fokker-Plank equation, Siam J. Math. Anal., 29 (1998), pp. 1--17. Zbl0915.35120MR1617171
  23. [23] J. Jost, Riemannian Geometry and Geometric Analysis. Springer, 2002. Zbl1034.53001MR1871261
  24. [24] J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects. Lectures in Math. ETH Zurich, Birkhauser Verlag, Basel, 1997. Zbl0896.53002MR1451625
  25. [25] U. Lang - V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, GAFA Geom. Funct. Anal., 7 (1997), pp. 535--560. Zbl0891.53046MR1466337
  26. [26] F. Otto, The geometry of dissipative evolution equations: the porus medium equation, Comm. Partial Differential Equations 26, no. 1-2 (2001), pp. 101--174. Zbl0984.35089MR1842429
  27. [27] K. T. Sturm, Stochastics and Analysis on Metric Spaces, lecture notes in preparation. 
  28. [28] K. T. Sturm, Metric spaces of lower bounded curvature, Exposition. Math., 17, no. 1 (1999), pp. 35--47. Zbl0983.53025MR1687468
  29. [29] K. T. Sturm, Probability Measures on Metric Spaces of Nonpositive Curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), pp. 357--390, Contemp. Math., 338, AMS, Providence, RI, 2003. Zbl1040.60002MR2039961
  30. [30] K. T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196, no.1 (2006), pp. 65--131. Zbl1105.53035MR2237206
  31. [31] C. Villani, Topics in Mass Transportation. Graduate Studies in mathematics, 58, AMS, Providence, RI, 2003. Zbl1106.90001MR1964483
  32. [32] C. Villani, Optimal Transport, Old and New. Springer, 2009. Zbl1156.53003MR2459454
  33. [33] S. Wenger, Isoperimetric inequalities of euclidean type in metric spaces, GAFA, Geom. funct. anal., Vol. 15 (2005), pp. 534--554. Zbl1084.53037MR2153909
  34. [34] S. Wenger, Flat convergence for integral currents in metric spaces, Calc. Var., 28 (2007), pp. 139--160. Zbl1110.53030MR2284563

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.