Inverse Function Theorems and Jacobians over Metric Spaces

Luca Granieri

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 235-247, electronic only
  • ISSN: 2299-3274

Abstract

top
We present inversion results for Lipschitz maps f : Ω ⊂ ℝN → (Y, d) and stability of inversion for uniformly convergent sequences. These results are based on the Area Formula and on the l.s.c. of metric Jacobians.

How to cite

top

Luca Granieri. "Inverse Function Theorems and Jacobians over Metric Spaces." Analysis and Geometry in Metric Spaces 2.1 (2014): 235-247, electronic only. <http://eudml.org/doc/267296>.

@article{LucaGranieri2014,
abstract = {We present inversion results for Lipschitz maps f : Ω ⊂ ℝN → (Y, d) and stability of inversion for uniformly convergent sequences. These results are based on the Area Formula and on the l.s.c. of metric Jacobians.},
author = {Luca Granieri},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Calculus of Variations; Geometric Measure Theory; area formula; lower semicontinuity; Jacobian; Inversion theorem; calculus of variations; geometric measure theory; inversion theorem},
language = {eng},
number = {1},
pages = {235-247, electronic only},
title = {Inverse Function Theorems and Jacobians over Metric Spaces},
url = {http://eudml.org/doc/267296},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Luca Granieri
TI - Inverse Function Theorems and Jacobians over Metric Spaces
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 235
EP - 247, electronic only
AB - We present inversion results for Lipschitz maps f : Ω ⊂ ℝN → (Y, d) and stability of inversion for uniformly convergent sequences. These results are based on the Area Formula and on the l.s.c. of metric Jacobians.
LA - eng
KW - Calculus of Variations; Geometric Measure Theory; area formula; lower semicontinuity; Jacobian; Inversion theorem; calculus of variations; geometric measure theory; inversion theorem
UR - http://eudml.org/doc/267296
ER -

References

top
  1. [1] E. Acerbi, G. Buttazzo, N. Fusco, Semicontinuity and Relaxation for Integrals Depending on Vector Valued Functions, J.Math. Pure et Appl. 62 (1983), 371-387. Zbl0481.49013
  2. [2] L. Ambrosio, B. Kircheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (3) (2000) 527–555. Zbl0966.28002
  3. [3] L. Ambrosio, B. Kircheim, Metric currents, Acta Mathematica 185 no. 1(2000), 1-80. Zbl0984.49025
  4. [4] L. Ambrosio, N. Fusco, D. Pallara, Function of Bounded Variations and Free Discontinbuity Problems,Oxford University Press, New York, 2000. Zbl0957.49001
  5. [5] L. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces, Oxford University Press, 2004. Zbl1080.28001
  6. [6] Erik Barvínek, Ivan Daler and Jan Franku, Convergence of sequences of inverse functions, Archivium Mathematicum, Vol. 27 3-4 (1991), 201–204. Zbl0752.40003
  7. [7] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol.1, AMS, 2000. Zbl0946.46002
  8. [8] Chung-Wu Ho, A note on proper maps, Proceedings AMS, Vol. 51 1 (1975), 237-241. Zbl0273.54007
  9. [9] P.G. Ciarlet, J. Necas, Injectivity and self-Contact in nonlinear elasticity, Arch. Rational Mech. Anal. 97 (1987), no. 3, 171-188. Zbl0628.73043
  10. [10] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer 2008. Zbl1140.49001
  11. [11] G. De Marco, G. Gorni, G. Zampieri, Global inversion of functions: an introduction, NODEA 1 (1994), 229-248. Zbl0820.58008
  12. [12] E. Durand-Cartagena, J.A. Jaramillo, Pointwise Lipschitz functions on metric spaces, J. Math. Anal. Appl. 363 (2010), 525– 548. Zbl1200.46030
  13. [13] I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Clarendom Press Oxford, 1995. Zbl0852.47030
  14. [14] W. Fulton, Algebraic Topology, Springer, 1995. Zbl0852.55001
  15. [15] J. Gevirtz, Metric conditions that imply local invertibility, Communications in Pure and AppliedMathematics 23 (1969), 243– 264. Zbl0172.33102
  16. [16] J. Gevirtz, Injectvity in Banach spaces and the Mazur-Ulam Theorem on Isometries, Transactions AMS 274, no. 1 (1982), 307–318. Zbl0497.46011
  17. [17] J. Gevirtz, A sharp condition for univalence in Euclidean spaces, Proceedings AMS 57, no. 2 (1976), 261–265. Zbl0344.26006
  18. [18] L. Granieri, Metric currents and geometry of Wasserstein spaces, Rend. Semin. Mat. Univ. Padova 124 (2010), 91-125. Zbl1210.35076
  19. [19] L. Granieri, F. Maddalena, A metric approach to elastic reformations, Acta Mathematica Applicandae, published online December 2013. Zbl1316.49051
  20. [20] L. Granieri, G. Mola, Sequences of inverse and implicit functions, in preparation. 
  21. [21] C. Gutierrez, C. Biasi, Finite Branched Coverings in a Generalized Inverse Mapping Theorem, Int. Journal of Math. Analysis 2 no. 4 (2008), 169–179. Zbl1179.26043
  22. [22] F. John, On Quasi-Isometric Mappings I, Communications in Pure and Applied Mathematics 21 (1968), 77–110. Zbl0157.45803
  23. [23] M. B. Karmanova, Area and Coarea Formulas for the mappings of Sobolev classes with values in a metric space, Siberian Mathematical Journal, Vol. 48, No. 4 (2007), 621–628. Proceedings of the AmericanMathematical Society, 121, No. 1 (1994), 113–123. [WoS] 
  24. [24] B. Kirchheim, Rectifiable Metric Spaces: Local Structure and Regularity of the Hausdorff Measure, Proceedings of the American Mathematical Society, 121, No. 1 (1994), 113–123. Zbl0806.28004
  25. [25] L. V. Kovalev, Jani Onninen, On invertibility of Sobolev mappings, Journal für die reine und angewandte Mathematik, 656, (2011), 1–16. Zbl1236.30021
  26. [26] L. V. Kovalev, Jani Onninen, Kai Rajala, Invertibility of Sobolev mappings under minimal hypotheses, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 2, 517–528. Zbl1190.30019
  27. [27] A. Lytchak, Open map Theorem for metric spaces, St. Petersburg Math. J. 17 (2006), No. 3, 477–491. Zbl1152.53033
  28. [28] V. Magnani, An Area formula in metric spaces, Colloq. Math. 124 (2011), no. 2, 275-283. Zbl1231.28007
  29. [29] J. S. Raymond, Local inversion for differentiable functions and Darboux property, Mathematika 49 (2002), no. 1-2, 141-158. [Crossref] Zbl1051.26009
  30. [30] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, AMS, 1989. 
  31. [31] O. Martio, S. Rickman and J. Vaisala, Topological and Metric Properties of Quasiregular Mappings, Annales Academie Scientiarum Fennicae Mathematica, 488 (1971), 1–31. Zbl0223.30018
  32. [32] M. Seeotharama Gowda, R. Sznajder, Weak connectedness of inverse images of continuus functions, Mathematics of Operations Reaserch 24 (1999), No. 1, 255-261. Zbl0977.90060
  33. [33] R. Van Der Putten, A note on the local invertibility of Sobolev functions, Math. Scand. 83 (1998), 255–264. Zbl0921.46031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.