Conic sheaves on subanalytic sites and Laplace transform

Luca Prelli

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 125, page 173-206
  • ISSN: 0041-8994

How to cite

top

Prelli, Luca. "Conic sheaves on subanalytic sites and Laplace transform." Rendiconti del Seminario Matematico della Università di Padova 125 (2011): 173-206. <http://eudml.org/doc/242095>.

@article{Prelli2011,
author = {Prelli, Luca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {conic sheaf; subanalytic site; tempered holomorphic function; Whitney holomorphic function; Laplace transform},
language = {eng},
pages = {173-206},
publisher = {Seminario Matematico of the University of Padua},
title = {Conic sheaves on subanalytic sites and Laplace transform},
url = {http://eudml.org/doc/242095},
volume = {125},
year = {2011},
}

TY - JOUR
AU - Prelli, Luca
TI - Conic sheaves on subanalytic sites and Laplace transform
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 125
SP - 173
EP - 206
LA - eng
KW - conic sheaf; subanalytic site; tempered holomorphic function; Whitney holomorphic function; Laplace transform
UR - http://eudml.org/doc/242095
ER -

References

top
  1. [1] O. Berni, Laplace transform of temperate holomorphic functions; Compositio Mathematica, 129 (2001), pp. 183–201. Zbl1003.32001MR1863301
  2. [2] E. Bierstone - D. Milmann, Semianalytic and subanalytic sets; Publ. I.H.E.S., 67 (1988), pp. 5–42. Zbl0674.32002MR972342
  3. [3] J. E. Björk, Analytic 𝒟 -modules and applications; Mathematics and its Applications, 247 , Kluwer Academic Publishers Group, Dordrecht (1993). Zbl0805.32001MR1232191
  4. [4] M. Coste, An introduction to o-minimal geometry; Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000). 
  5. [5] M. Edmundo - L. Prelli, Sheaves on 𝒯 -topologies, arXiv:1002.0690. 
  6. [6] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems; Publ. RIMS, Kyoto Univ., 20 (1984), pp. 319–365. Zbl0566.32023MR743382
  7. [7] M. Kashiwara, 𝔻 -modules and microlocal calculus; Translations of Math. Monog., 217 , Iwanami Series in Modern Math., American Math. Soc., Providence (2003). MR1943036
  8. [8] M. Kashiwara - P. Schapira, Sheaves on manifolds; Grundlehren der Math., 292 , Springer-Verlag, Berlin (1990). Zbl0709.18001MR1074006
  9. [9] M. Kashiwara - P. Schapira, Moderate and formal cohomology associated with constructible sheaves; Mémoires Soc. Math. France, 64 (1996). Zbl0881.58060MR1421293
  10. [10] M. Kashiwara - P. Schapira, Integral transforms with exponential kernels and Laplace transform; Journal of the AMS, 4 vol. 10 (1997). Zbl0888.32004MR1447834
  11. [11] M. Kashiwara - P. Schapira, Ind-sheaves; Astérisque, 271 (2001). Zbl0993.32009MR1827714
  12. [12] S. Łojaciewicz, Sur la géométrie semi- et sous-analytique; Ann. Inst. Fourier, 43 (1993), pp. 1575–1595. Zbl0803.32002MR1275210
  13. [13] S. Łojaciewicz, Sur le problème de la division; Studia Mathematica, 8 (1959), pp. 87–136. Zbl0115.10203
  14. [14] B. Malgrange, Ideals of differentiable functions; Tata Institute, Oxford University Press (1967). Zbl0177.17902MR212575
  15. [15] B. Malgrange, Transformation de Fourier géométrique; Séminaire Bourbaki, 30 , Exp. N. 692 (1987-1988). Zbl0687.35003MR992206
  16. [16] L. Prelli, Sheaves on subanalytic sites; Rend. Sem. Mat. Univ. Padova, Vol. 120 (2008), pp. 167–216. Zbl1171.32002MR2492657
  17. [17] L. Prelli, Microlocalization of subanalytic sheaves; C. R. Acad. Sci. Paris Math., 345 (2007), pp. 127–132, arXiv:math.AG/0702459. Zbl1159.14034MR2344810
  18. [18] G. Tamme, Introduction to étale cohomology; Universitext Springer-Verlag, Berlin (1994). Zbl0815.14012MR1317816
  19. [19] L. Van Der Dries, Tame topology and o-minimal structures; London Math. Society Lecture Notes Series, 248 , Cambridge University Press, Cambridge (1998). Zbl0953.03045MR1633348
  20. [20] A. J. Wilkie, Covering definable open sets by open cells; in M. Edmundo, D. Richardson, and A. Wilkie, editors, O-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry, Cuvillier Verlag (2005). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.