Conservation property of symmetric jump processes
Jun Masamune; Toshihiro Uemura
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 3, page 650-662
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topMasamune, Jun, and Uemura, Toshihiro. "Conservation property of symmetric jump processes." Annales de l'I.H.P. Probabilités et statistiques 47.3 (2011): 650-662. <http://eudml.org/doc/242295>.
@article{Masamune2011,
abstract = {Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate of the process. We will also present examples of jump processes which satisfy these conditions.},
author = {Masamune, Jun, Uemura, Toshihiro},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {conservation property; symmetric Dirichlet forms with jumps; derivation property; jump processes; perturbation method},
language = {eng},
number = {3},
pages = {650-662},
publisher = {Gauthier-Villars},
title = {Conservation property of symmetric jump processes},
url = {http://eudml.org/doc/242295},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Masamune, Jun
AU - Uemura, Toshihiro
TI - Conservation property of symmetric jump processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 3
SP - 650
EP - 662
AB - Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate of the process. We will also present examples of jump processes which satisfy these conditions.
LA - eng
KW - conservation property; symmetric Dirichlet forms with jumps; derivation property; jump processes; perturbation method
UR - http://eudml.org/doc/242295
ER -
References
top- [1] N. Aronszajn and K. T. Smith. Theory of Bessel potentials I. Ann. Inst. Fourier (Grenoble) 11 (1961) 385–475. Zbl0102.32401MR143935
- [2] M. T. Barlow, R. F. Bass, Z. Q. Chen and M. Kassmann. Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963–1999. Zbl1166.60045MR2465826
- [3] M. F. Chen. From Markov Chains to Non-Equilibrium Particle Systems, 2nd edition. World Scientific, River Edge, NJ, 2004. Zbl0753.60055MR2091955
- [4] Z. Q. Chen, P. Kim and T. Kumagai. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342 (2008) 833–883. Zbl1156.60069MR2443765
- [5] Z. Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 (2008) 277–317. Zbl1131.60076MR2357678
- [6] E. B. Davies. The heat kernel bounds, conservation of probability and the Feller property. Festschrift on the occasion of the 70th birthday of Shmuel Agmon. J. Anal. Math. 58 (1992) 99–119. Zbl0808.58041MR1226938
- [7] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space–Time. Cambridge Monographs on Mathematical Physics 1. Cambridge Univ. Press, London, 1973. Zbl0265.53054MR424186
- [8] M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [9] M. P. Gaffney. The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12 (1959) 1–11. Zbl0102.09202MR102097
- [10] A. Grigor’yan. Stochastically complete manifolds. Dokl. Akad. Nauk SSSR 290 (1986) 534–537 (Russian). Zbl0632.58041MR860324
- [11] K. Ichihara. Explosion problems for symmetric diffusion processes. Trans. Amer. Math. Soc. 298 (1986) 515–536. Zbl0612.60068MR860378
- [12] Y. Isozaki and T. Uemura. A family of symmetric stable-like processes and its global path properties. Probab. Math. Statist. 24 (2004) 145–164. Zbl1063.60119MR2148226
- [13] N. Jacob. Pseudo differential operators and Markov processes, Vol. 1–3. Imperial Colledge Press, London, 2001. Zbl0987.60003MR1873235
- [14] L. Karp and P. Li. The heat equation on complete Riemannian manifold. Preprint, 1982.
- [15] S. Karlin and J. L. McGregor. The differential equations of birth-and-death processes, and the Stieltjes moment problem. Trans. Amer. Math. Soc. 85 (1957) 489–546. Zbl0091.13801MR91566
- [16] J. Masamune. Analysis of the Laplacian of an incomplete manifold with almost polar boundary. Rend. Mat. Appl. (7) 25 (2005) 109–126. Zbl1086.58014MR2142127
- [17] J. Masamune and T. Uemura. Lp-Liouville property for nonlocal operators. Preprint, 2008. Zbl1230.42021
- [18] Y. Oshima. On conservativeness and recurrence criteria for Markov processes. Potential Anal. 1 (1992) 115–131. Zbl1081.60545MR1245880
- [19] R. L. Schilling. Conservativeness of semigroups generated by pseudo-differential operators. Potential Anal. 9 (1998) 91–104. Zbl0917.60066MR1644108
- [20] R. L. Schilling and T. Uemura. On the Feller property of Dirichlet forms generated by pseudo-differential operator. Tohoku Math. J. (2) 59 (2007) 401–422. Zbl1141.31006MR2365348
- [21] K. T. Sturm. Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties. J. Reine Angew. Math. 456 (1994) 173–196. Zbl0806.53041MR1301456
- [22] M. Takeda. On the conservativeness of the Brownian motion on a Riemannian manifold. Bull. London Math. Soc. 23 (1991) 86–88. Zbl0748.60070MR1111541
- [23] T. Uemura. On some path properties of symmetric stable-like processes for one dimension. Potential Anal. 16 (2002) 79–91. Zbl0998.31005MR1880349
- [24] T. Uemura. On symmetric stable-like processes: Some path properties and generators. J. Theoret. Probab. 17 (2004) 541–555. Zbl1067.60020MR2091550
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.